Newton's Method on MATLAB for Stationary Solutions for the Non-linear Klein-Gordon Equation

2 visualizaciones (últimos 30 días)
By interpreting the equation in this way, we can relate the dynamics described by the discrete Klein - Gordon equation to the behavior of DNA molecules within a biological system .
I am trying to represnt stationary points of the discrete Klein - Gordon equation. And the result are as follows.
Mathematica are different from MATLAB Any suggestion?
UPDATED CODE
% Parameters
numBases = 100; % Number of spatial points
omegaD = 0.2; % Common parameter for the equation
% Preallocate the array for the function handles
equations = cell(numBases, 1);
% Initial guess for the solution
initialGuess = 0.01 * ones(numBases, 1);
% Parameter sets for kappa and beta
paramSets = [0.1, 0.05; 0.5, 0.05; 0.1, 0.2];
% Prepare figure for subplot
figure;
set(gcf, 'Position', [100, 100, 1200, 400]); % Set figure size
% Newton-Raphson method parameters
maxIterations = 1000;
tolerance = 1e-10;
for i = 1:size(paramSets, 1)
kappa = paramSets(i, 1);
beta = paramSets(i, 2);
% Define the equations using a function
for n = 2:numBases-1
equations{n} = @(x) -kappa * (x(n+1) - 2 * x(n) + x(n-1)) - omegaD^2 * (x(n) - beta * x(n)^3);
end
% Boundary conditions with specified fixed values
someFixedValue1 = 10; % Replace with actual value if needed
someFixedValue2 = 10; % Replace with actual value if needed
equations{1} = @(x) x(1) - someFixedValue1;
equations{numBases} = @(x) x(numBases) - someFixedValue2;
% Combine all equations into a single function
F = @(x) cell2mat(cellfun(@(f) f(x), equations, 'UniformOutput', false));
% Newton-Raphson iteration
x_solution = initialGuess;
for iter = 1:maxIterations
% Evaluate function
Fx = F(x_solution);
% Evaluate Jacobian
J = zeros(numBases, numBases);
epsilon = 1e-6; % For numerical differentiation
for j = 1:numBases
x_temp = x_solution;
x_temp(j) = x_temp(j) + epsilon;
Fx_temp = F(x_temp);
J(:, j) = (Fx_temp - Fx) / epsilon;
end
% Update solution
delta = -J\Fx;
x_solution = x_solution + delta;
% Check convergence
if norm(delta, inf) < tolerance
fprintf('Convergence achieved after %d iterations.\n', iter);
break;
end
end
if iter == maxIterations
error('Maximum iterations reached without convergence.');
end
% Plot the solution in a subplot
subplot(1, 3, i);
plot(x_solution, 'o-', 'LineWidth', 2);
grid on;
xlabel('n', 'FontSize', 12);
ylabel('x[n]', 'FontSize', 12);
title(sprintf('\\kappa = %.2f, \\beta = %.2f', kappa, beta), 'FontSize', 14);
end
Convergence achieved after 392 iterations. Convergence achieved after 424 iterations. Convergence achieved after 63 iterations.
% Improve overall aesthetics
sgtitle('Stationary States for Different \kappa and \beta Values', 'FontSize', 16); % Super title for the figure
Mathematica plots
  3 comentarios
Athanasios Paraskevopoulos
Athanasios Paraskevopoulos el 18 de Mzo. de 2024
representing the frequency term, speculative and low to reflect slow dynamics

Iniciar sesión para comentar.

Respuesta aceptada

Torsten
Torsten el 18 de Mzo. de 2024
Editada: Torsten el 18 de Mzo. de 2024
All you see in the graphs are floating point errors.
Your system of equations has solution x(i) = 0 for 1 <= i <= numBases and all three parameter constellations.
  17 comentarios
Athanasios Paraskevopoulos
Athanasios Paraskevopoulos el 20 de Mzo. de 2024
Because I am begginer to Matlab, when I use fsolve
% Solve the system of equations using fsolve
x_solution = fsolve(F, initialGuess);
norm(F(x_solution));
I replace all the following code and is more accurate right?
% Newton-Raphson iteration
for iter = 1:maxIterations
% Evaluate function
Fx = F(x_solution);
% Evaluate Jacobian
J = zeros(numBases, numBases);
epsilon = 1e-6; % For numerical differentiation
for j = 1:numBases
x_temp = x_solution;
x_temp(j) = x_temp(j) + epsilon;
Fx_temp = F(x_temp);
J(:, j) = (Fx_temp - Fx) / epsilon;
end
% Update solution
delta = -J\Fx;
x_solution = x_solution + delta;
% Check convergence
if norm(delta, inf) < tolerance && norm(Fx, inf) < tolerance
fprintf('Convergence achieved after %d iterations.\n', iter);
break;
end
end
if iter == maxIterations
error('Maximum iterations reached without convergence.');
end
Torsten
Torsten el 20 de Mzo. de 2024
Editada: Torsten el 20 de Mzo. de 2024
Because I am begginer to Matlab, when I use fsolve I replace all the following code
Yes.
and is more accurate right?
Obviously not in your case since it doesn't converge for the initialGuess you supply. Only if you set
initialGuess = 10 * ones(numBases, 1);
e.g., it converges to the solution you get with your code of Newton's method (except for the first case where at least three solutions seem to exist: 0, your solution and the solution you get with "fsolve").
So it's hard to interprete the results if you cannot apply physical reasoning to sort out solutions that make no sense.

Iniciar sesión para comentar.

Más respuestas (1)

Athanasios Paraskevopoulos
Athanasios Paraskevopoulos el 20 de Mzo. de 2024
@Torsten I read the fsolve Algorithms and here's the modified MATLAB script using the levenberg-marquardt algorithm for the fsolve function. Now I have the results that I wanted:
% Parameters
numBases = 100; % Number of spatial points
omegaD = 0.2; % Common parameter for the equation
% Preallocate the array for the function handles
equations = cell(numBases, 1);
% Initial guess for the solution
initialGuess = 0.01 * ones(numBases, 1);
% Parameter sets for kappa and beta
paramSets = [0.1, 0.05; 0.5, 0.05; 0.1, 0.2];
% Prepare figure for subplot
figure;
set(gcf, 'Position', [100, 100, 1200, 400]); % Set figure size
% Newton-Raphson method parameters
maxIterations = 1000;
tolerance = 1e-10;
% Set options for fsolve to use the 'levenberg-marquardt' algorithm
options = optimoptions('fsolve', 'Algorithm', 'levenberg-marquardt', 'MaxIterations', maxIterations, 'FunctionTolerance', tolerance);
for i = 1:size(paramSets, 1)
kappa = paramSets(i, 1);
beta = paramSets(i, 2);
% Define the equations using a function
for n = 2:numBases-1
equations{n} = @(x) -kappa * (x(n+1) - 2 * x(n) + x(n-1)) - omegaD^2 * (x(n) - beta * x(n)^3);
end
% Boundary conditions with specified fixed values
someFixedValue1 = 10; % Replace with actual value if needed
someFixedValue2 = 10; % Replace with actual value if needed
equations{1} = @(x) x(1) - someFixedValue1;
equations{numBases} = @(x) x(numBases) - someFixedValue2;
% Combine all equations into a single function
F = @(x) cell2mat(cellfun(@(f) f(x), equations, 'UniformOutput', false));
% Solve the system of equations using fsolve with the specified options
x_solution = fsolve(F, initialGuess, options);
norm(F(x_solution))
% Plot the solution in a subplot
subplot(1, 3, i);
plot(x_solution, 'o-', 'LineWidth', 2);
grid on;
xlabel('n', 'FontSize', 12);
ylabel('x[n]', 'FontSize', 12);
title(sprintf('\\kappa = %.2f, \\beta = %.2f', kappa, beta), 'FontSize', 14);
end
No solution found. fsolve stopped because the last step was ineffective. However, the vector of function values is not near zero, as measured by the value of the function tolerance.
ans = 0.0569
No solution found. fsolve stopped because the last step was ineffective. However, the vector of function values is not near zero, as measured by the value of the function tolerance.
ans = 0.1339
No solution found. fsolve stopped because the relative size of the current step is less than the value of the step size tolerance, but the vector of function values is not near zero as measured by the value of the function tolerance.
ans = 0.0306
% Improve overall aesthetics
sgtitle('Stationary States for Different \kappa and \beta Values', 'FontSize', 16); % Super title for the figure

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by