Error (Unable to perform assignment because value of type 'sym' is not convertible to 'double'.)
15 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hi everone,
Can anyone help with the code below? I got the error (Unable to perform assignment because value of type 'sym' is not convertible to 'double'.)
% theoretical
clear all; clear; clc;
d0=0;
h_A=40;
% k=0.003;
k=0.07512;
a1 = 8;
b1 = 0.2;
aL = 2; % LOS path loss exponent
aN = 4; % NLOS path loss exponent
betaL = 61.4;
betaN = 72;
CL = 10^(-betaL/10); % LoS path loss
CN = 10^(-betaN/10); % NLoS path loss
beta = 1/141.4; % Parameters of density and size of the blockage
N =10; % Fixed number of UAVs (for BPP)
h=exprnd(1);
rc =500; % Avg. Cell radius in meters for the simulation
L=(3*10^8)^2/(4*pi*1.05*10^12)^2; % Free space path loss constant
GA_dB = 25;
GA = 10^(GA_dB/10);
gA_dB = -10;
gA = 10^(gA_dB/10);
thetaA = 30; % beamwidth of the main lobe at the ABS
Gu_dB = 15;
Gu = 10^(Gu_dB/10);
gu_dB = -10;
gu = 10^(gu_dB/10);
thetau = 30; % beamwidth of the main lobe at the user
W = 100; % BW MHz
Q = 10; % Noise figure
np_dB = -90 +10*10*log10(W) + Q; % noise power dBm
np = 10^(np_dB/10); % noise power in Watt
PA_dBm= 10; % ABS power dBm
PA = 10^(PA_dBm/10); % ABS power in Watt
A= PA * GA * Gu * L *h_A; % Overall signal strength constant
beta = 1/141.4; % parameters of density and size of the blockage
cr = thetaA/360;
ct = thetau/360;
B = [GA*Gu, GA*gu, gu*GA, gA*gu]; % directivity gain of the interfernce link
pa = [cr*ct, cr*(1-ct), (1-cr)*ct, (1-cr)*(1-ct)]; % probablity of the directivity gain of the interfernce link
av = pa./(GA*Gu);
thresh_dB = 0:5:10;
thresh = 10.^(thresh_dB./10);
syms x r w
xm = sqrt((rc - d0)^2 + h_A^2);
xu = sqrt((rc + d0)^2 + h_A^2);
f(x) = piecewise(x >= h_A & x <= xm, (2 * x) / rc^2, x > xm & x <= xu, (2 * x) / ( pi*rc^2) * acos(((x^2)+ d0^2 - rc^2 - h_A^2 ) / (2 * d0 * sqrt(x^2 - h_A^2))),0);
PL(r) = exp(-beta.*r);
PN(r) = 1-PL(r);
PL(x) = exp(-beta.*x);
PN(x) = 1-PL(x);
PL(w) = exp(-beta.*w);
PN(w) = 1-PL(w);
D1(r) = (aN /k) *lambertw(0, (k/aN)* exp((k *r)/aN) * r^(aL/aN));
D2(r) = (aL /k) *lambertw(0, (k/aN)* exp((k *r)/aN) * r^(aL/aN));
% Association Probability
LA = N* (int( f(r)* PL(r) * ( int(PL(x)*f(x),x,r,xu) + int(PN(x)*f(x),x,D1(r),xu))^(N-1),r,h_A,xu));
NA = N* (int( f(r)* PN(r) * ( int(PN(x)*f(x),x,r,xu) + int(PL(x)*f(x),x,D2(r),xu))^(N-1),r,h_A,xu));
% Servig distance distribution
fRL(r)= ( N * PL(r) * f(r)* ( int(PL(x)*f(x),x,r,xu) + int(PN(x)*f(x),x,D1(r),xu))^(N-1) ) / LA ;
fRN(r)= ( N * PN(r) * f(r)* ( int(PN(x)*f(x),x,r,xu) + int(PL(x)*f(x),x,D2(r),xu))^(N-1) ) / NA ;
% Interfernce distance distribution
fWLL = PL(w)*f(w) / (int(PL(x)*f(x),w,r,xu));
fWN = PN(w)*f(w) / (int(PN(x)*f(x),w,D1(r),xu));
fWNL = PL(w)*f(w) / (int(PL(x)*f(x),w,D2(r),xu));
fWNN = PN(w)*f(w) / (int(PN(x)*f(x),w,r,xu));
PLA = (int(PL(x)*f(x),x,r,xu)) / ( int(PL(x)*f(x),x,r,xu) + int(PN(x)*f(x),x,D1(r),xu)) ;
PNA = (int(PN(x)*f(x),x,D1(r),xu)) / ( int(PL(x)*f(x),x,r,xu) + int(PN(x)*f(x),x,D1(r),xu)) ;
PeqL = 1/ ( int(PL(x)*f(x),x,r,xu) + int(PN(x)*f(x),x,D1(r),xu));
PeqN = 1/ ( int(PN(x)*f(x),x,r,xu) + int(PL(x)*f(x),x,D2(r),xu));
PcT = zeros(length(thresh));
U = thresh / PA * GA * Gu * L * r^(-aL) * exp(-k * r);
U1 = thresh / PA * GA * Gu * L * r^(-aN) * exp(-k * r);
for T = 1:length(thresh)
LTL=0;
for i=1:length(B)
F1 = int( PL(w)*f(w) * (1/(1+ U(T) * PA * B(i) * w^(-aL) * exp(-k * w))),w,r,xu);
F2 = int( PN(w)*f(w) * (1/(1+ U(T) * PA * B(i) * w^(-aN) * exp(-k * w))),w,D1(r),xu);
LTL = LTL + (F1 + F2) * pa(i) ;
end
LTN=0;
for i=1:length(B)
F1 = int( PN(w)*f(w) * (1/(1+ U1(T) * PA * B(i) * w^(-aN) * exp(-k * w))),w,r,xu);
F2 = int( PL(w)*f(w) * (1/(1+ U1(T) * PA * B(i) * w^(-aL) * exp(-k * w))),w,D2(r),xu);
LTN = LTN + (F1 + F2) * pa(i) ;
end
PcT(T) =LA * exp(-U(T) * np) * (PeqL*LTL)^(N-1) + NA * exp(-U1(T) * np) * (PeqN*LTN)^(N-1);
end
plot(thresh_dB,PcT,'r','LineWidth',1.5)
legend ('analytical result')
hold on
0 comentarios
Respuestas (1)
Walter Roberson
el 18 de Mzo. de 2024
PcT = zeros(length(thresh));
PcT is assigned as numeric zeros.
F1 = int( PL(w)*f(w) * (1/(1+ U(T) * PA * B(i) * w^(-aL) * exp(-k * w))),w,r,xu);
F1 and F2 are int() and so are symbolic. So your LTL and LTN are symbolic.
PcT(T) =LA * exp(-U(T) * np) * (PeqL*LTL)^(N-1) + NA * exp(-U1(T) * np) * (PeqN*LTN)^(N-1);
symbolic expressions to the power of 9 can take a long time to compute. The result is going to be a symbolic expression. But the result has to be assigned into the double-precision location PcT(T)
The question then becomes whether the resulting symbolic expression can be converted to double precision; the answer to that is NO.
4 comentarios
Ver también
Categorías
Más información sobre Conversion Between Symbolic and Numeric en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!