How to adjust and adapt General code of Metaheuristic algorithm to fit you problem?

6 visualizaciones (últimos 30 días)
Dear all;
I am using a standard algorithm of GWO to implement it of parameters estimation of my problem
The general GWO code is based on Objective function, in my case i do not have the objective function. instead, i have experiment data.
I need the algorithm frameworks (pseaudo code or flowchart ..) in this case to use it for multiple metaheuristic cases.
Here is the general code:
% Grey Wolf Optimizer
function [Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents_no,Max_iter,lb,ub,dim,fobj)
% initialize alpha, beta, and delta_pos
Alpha_pos=zeros(1,dim);
Alpha_score=inf; %change this to -inf for maximization problems
Beta_pos=zeros(1,dim);
Beta_score=inf; %change this to -inf for maximization problems
Delta_pos=zeros(1,dim);
Delta_score=inf; %change this to -inf for maximization problems
%Initialize the positions of search agents
Positions=initialization(SearchAgents_no,dim,ub,lb);
Convergence_curve=zeros(1,Max_iter);
l=0;% Loop counter
% Main loop
while l<Max_iter
for i=1:size(Positions,1)
% Return back the search agents that go beyond the boundaries of the search space
Flag4ub=Positions(i,:)>ub;
Flag4lb=Positions(i,:)<lb;
Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;
% Calculate objective function for each search agent
fitness=fobj(Positions(i,:));
% Update Alpha, Beta, and Delta
if fitness<Alpha_score
Alpha_score=fitness; % Update alpha
Alpha_pos=Positions(i,:);
end
if fitness>Alpha_score && fitness<Beta_score
Beta_score=fitness; % Update beta
Beta_pos=Positions(i,:);
end
if fitness>Alpha_score && fitness>Beta_score && fitness<Delta_score
Delta_score=fitness; % Update delta
Delta_pos=Positions(i,:);
end
end
a=2-l*((2)/Max_iter); % a decreases linearly fron 2 to 0
% Update the Position of search agents including omegas
for i=1:size(Positions,1)
for j=1:size(Positions,2)
r1=rand(); % r1 is a random number in [0,1]
r2=rand(); % r2 is a random number in [0,1]
A1=2*a*r1-a; % Equation (3.3)
C1=2*r2; % Equation (3.4)
D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1
X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1
r1=rand();
r2=rand();
A2=2*a*r1-a; % Equation (3.3)
C2=2*r2; % Equation (3.4)
D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2
X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2
r1=rand();
r2=rand();
A3=2*a*r1-a; % Equation (3.3)
C3=2*r2; % Equation (3.4)
D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3
X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3
Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7)
end
end
l=l+1;
Convergence_curve(l)=Alpha_score;
end

Respuestas (1)

Umang Pandey
Umang Pandey el 18 de Jul. de 2024
Hi Yasser,
To adapt the Grey Wolf Optimizer (GWO) for parameter estimation using experimental data instead of an explicit objective function, you can create a custom objective function that measures the discrepancy between the model's predictions (based on the current parameters) and the experimental data. This discrepancy can be quantified using a metric such as the mean squared error (MSE).
Here is a pseudo-code framework for the modified GWO algorithm:
1) Initialize Parameters:
  • Number of search agents (SearchAgents_no)
  • Maximum number of iterations (Max_iter)
  • Lower and upper bounds of the parameters (lb, ub)
  • Dimension of the parameter space (dim)
  • Experimental data (exp_data)
2) Initialize Alpha, Beta, and Delta Positions and Scores:
  • Alpha_pos, Beta_pos, Delta_pos as zero vectors of size dim
  • Alpha_score, Beta_score, Delta_score as infinity
3) Initialize the Positions of Search Agents:
  • Positions matrix with random values within bounds lb and ub
4) Main Loop (Iterate until Max_iter):
  • For each search agent:
  • Ensure positions are within bounds
  • Calculate the fitness of each search agent:
  • Use a custom objective function that computes the MSE between model predictions and exp_data
  • Update Alpha, Beta, and Delta positions and scores based on fitness
  • Update the positions of search agents using GWO equations
  • Record the best score in the convergence curve
5) Return Results:
  • Best score (Alpha_score)
  • Best position (Alpha_pos)
  • Convergence curve (Convergence_curve)
You can create a sample Objective function that calculates the MSE between the model's predictions and the experimental data like this:
function mse = customObjectiveFunction(params, exp_data)
% Model predictions based on current params
model_predictions = modelFunction(params);
% Calculate Mean Squared Error
mse = mean((exp_data - model_predictions).^2);
end
function predictions = modelFunction(params)
% Define your model here using the parameters
% For example, a simple linear model:
% predictions = params(1) * x + params(2);
% Replace this with your actual model
predictions = ...;
end
You can refer to the following File Exchange Submission for GWO implementation:
Hope this helps!
Best,
Umang

Productos


Versión

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by