I need help with Predictor-Corrector Scheme for PDE. I use 2d matrices instead of 3d matrices, but something is wrong and I don't understand what.
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
This is my problem.
∂u/∂t = 4∆u + e^t * cos(πx/2) * sin(πy/4) x ∈ (0, 1), y ∈ (0, 2), t ∈ (0, T],
∂u/∂x | x=0 = y,
u | x=1 = y + 1,
u | y=0 = 1,
∂u/∂y | y=2 = x,
u | t=0 = x*y + 1
% CODE
% Parameters
Lx = 1.0; Ly = 2.0;
Nx = 50; Ny = 100; % Number of steps in x and y directions
% Coefficient
D = 4;
% Time parameters
T = 0.0001;
Nt = 1000; % Number of time steps
dt = T / Nt;
% Grid
dx = Lx / (Nx - 0.5);
x = linspace(-dx / 2, Lx, Nx + 1);
dy = Ly / (Ny - 0.5);
y = linspace(Ly + dy / 2, 0, Ny + 1);
t = linspace(0, T, Nt + 1);
% Initial condition
[X, Y] = meshgrid(x, y);
u = X .* Y + 1;
% Inhomogeneity function
f = @(x, y, t) exp(t) .* cos(pi * x / 2) .* sin(pi * y / 4);
% Thomas algorithm for tridiagonal system
function x = thomas_algorithm(a, b, c, d)
n = length(d);
cp = zeros(n - 1, 1);
dp = zeros(n, 1);
% Forward sweep
cp(1) = c(1) / b(1);
dp(1) = d(1) / b(1);
for i = 2:n
m = 1.0 / (b(i) - a(i - 1) * cp(i - 1));
if i < n
cp(i) = c(i) * m;
end
dp(i) = (d(i) - a(i - 1) * dp(i - 1)) * m;
end
% Backward substitution
x = zeros(n, 1);
x(n) = dp(n);
for i = n - 1:-1:1
x(i) = dp(i) - cp(i) * x(i + 1);
end
end
% Numerical solution scheme
for n = 1:Nt
u_old = u;
% Predictor step in x direction
for j = 2:Ny
a = -D * ones(Nx - 1, 1) / (dx^2);
b = (1 / (dt / 2) + 2 * D / (dx^2)) * ones(Nx - 1, 1);
c = -D * ones(Nx - 1, 1) / (dx^2);
d = u(2:Nx, j) / (dt / 2) + f(x(2:Nx), y(j), t(n));
u(2:Nx, j) = thomas_algorithm(a, b, c, d);
end
% Predictor step in y direction
for i = 2:Nx
a = -D * ones(Ny - 1, 1) / (dy^2);
b = (1 / (dt / 2) + 2 * D / (dy^2)) * ones(Ny - 1, 1);
c = -D * ones(Ny - 1, 1) / (dy^2);
d = u(i, 2:Ny) / (dt / 2) + f(x(i), y(2:Ny), t(n));
u(i, 2:Ny) = thomas_algorithm(a, b, c, d);
end
u_old1 = u;
% Corrector step
for i = 2:Nx
for j = 2:Ny
u(i, j) = u_old(i, j) + dt * (...
D * (u_old1(i - 1, j) - 2 * u_old1(i, j) + u_old1(i + 1, j)) / (dx^2) + ...
D * (u_old1(i, j - 1) - 2 * u_old1(i, j) + u_old1(i, j + 1)) / (dy^2) + ...
f(x(i), y(j), t(n) + dt / 2) ...
);
end
end
% Apply boundary conditions
u(:, 1) = 1; % y = 0
u(:, end) = u(:, end - 1) + dy * x; % Neumann y = 2
u(1, :) = u(2, :) - dx * y; % Neumann x = 0
u(end, :) = y + 1; % x = 1
end
0 comentarios
Respuestas (1)
Aastha
el 1 de Oct. de 2024
Hi Jane,
I ran the code and encountered some errors. I have mentioned the errors and suggestions to resolve them below:
In the line:
d = u(2:Nx, j) / (dt / 2) + f(x(2:Nx), y(j), t(n));
There was an error that I diagnosed using a "try-catch" block. It appears that the variable "u" is of size 100x51, but the loop iterator “j” is going from 2 to “Ny” which is causing an out-of-bounds error since “Ny” is greater than 51. You can either reduce the value of “Ny” to 50 (since you are using “j+1” as an index for “u” in your code) or increase the size of “u” based on your application's needs.
Next, in this line:
u(:, end) = u(:, end - 1) + dy * x; % Neumann y = 2;
there is a size mismatch between the left-hand side (LHS) and the right-hand side (RHS). The term “u(:, end - 1)” is of size 51x1, while “dy * x” is of size 1x51. Adding these results in a 51x51 matrix, which doesn't match the LHS size of 51x1. You can resolve this by using the “transpose” function in MATLAB to make “dy * x” a 51x1 matrix with the code snippet mentioned below:
transpose(dy * x);
This should fix the errors in the code.
You may refer to MathWorks documentation of “transpose” and “try-catch” function for more information. Following are the links for the same:
I hope this helps!
0 comentarios
Ver también
Categorías
Más información sobre Boundary Conditions en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!