Need help solving heat equation using adi method

3 visualizaciones (últimos 30 días)
Vard
Vard el 12 de Mayo de 2024
Editada: Vard el 16 de Mayo de 2024
Nx = 50;
Ny = 50;
dx = 1.0 / (Nx - 1);
dy = 2.0 / (Ny - 1);
T = 0.00001;
dt = 0.000000001;
Nt = 1000; % Total number of time steps
alpha = 4; % Diffusion coefficient
x = linspace(0, 1, Nx);
y = linspace(0, 2, Ny);
[X, Y] = meshgrid(x, y);
U = Y .* X + 1; % Initial condition
function val = f(x, y, t)
val = exp(t) * cos(pi * x / 2) * sin(pi * y / 4);
end
function U = apply_boundary_conditions(U, x, y, dy, dx)
U(:, 1) = 1; % y=0
U(:, end) = U(:, end-1) + dy .* x'; % y=2
U(1, :) = U(2, :) - dx * y; % x=0
U(end, :) = y' + 1; % x=1
end
% Thomas algorithm
function x = thomas_algorithm(a, b, c, d)
n = length(d);
c_star = zeros(n-1, 1);
d_star = zeros(n, 1);
x = zeros(n, 1);
c_star(1) = c(1) / b(1);
d_star(1) = d(1) / b(1);
for i = 2:n-1
temp = b(i) - a(i-1) * c_star(i-1);
c_star(i) = c(i) / temp;
d_star(i) = (d(i) - a(i-1) * d_star(i-1)) / temp;
end
d_star(n) = (d(n) - a(n-1) * d_star(n-1)) / b(n);
x(n) = d_star(n);
for i = n-1:-1:1
x(i) = d_star(i) - c_star(i) * x(i+1);
end
end
% ADI method
for n = 1:Nt
U = apply_boundary_conditions(U, x, y, dy, dx);
% First half-step: X-direction implicit, Y-direction explicit
for j = 2:Ny-1
a = -alpha * dt / (2 * dx^2) * ones(Nx-1, 1);
b = (1 + alpha * dt / dx^2) * ones(Nx, 1);
c = -alpha * dt / (2 * dx^2) * ones(Nx-1, 1);
d = U(j, 2:end-1)' + 0.5 * alpha * dt / dy^2 * (U(j+1, 2:end-1) - 2 * U(j, 2:end-1) + U(j-1, 2:end-1))' + dt * f(x(2:end-1), y(j), n*dt);
U(j, 2:end-1) = thomas_algorithm(a, b(2:end-1), c, d);
end
% Second half-step: Y-direction implicit, X-direction explicit
for i = 2:Nx-1
a = -alpha * dt / (2 * dy^2) * ones(Ny-1, 1);
b = (1 + alpha * dt / dy^2) * ones(Ny, 1);
c = -alpha * dt / (2 * dy^2) * ones(Ny-1, 1);
d = U(2:end-1, i) + 0.5 * alpha * dt / dx^2 * (U(2:end-1, i+1) - 2 * U(2:end-1, i) + U(2:end-1, i-1)) + dt * f(x(i), y(2:end-1), n*dt);
U(2:end-1, i) = thomas_algorithm(a, b(2:end-1), c, d);
end
U = apply_boundary_conditions(U, x, y, dy, dx);
end
% Visualization
surf(X, Y, U);
title('ADI Solution at T=' + string(T));
xlabel('X');
ylabel('Y');
zlabel('U');
colorbar;
  1 comentario
Torsten
Torsten el 12 de Mayo de 2024
Shouldn't your solution array be three-dimensional instead of two-dimensional ? The way you arranged the code, you only get one solution at time T - the complete history for U is overwritten.

Iniciar sesión para comentar.

Respuestas (1)

John D'Errico
John D'Errico el 12 de Mayo de 2024
You say it works for sufficiently small values dt.
With that exp(t) term in there, do you seriously expect it to work well for large values of dt? I have dreams myself somedays...
  19 comentarios
Vard
Vard el 13 de Mayo de 2024
@Torsten Do you have a another solution with using three dimensional arrays?
Torsten
Torsten el 13 de Mayo de 2024
Editada: Torsten el 13 de Mayo de 2024
If your code were correct, you could simply save the solution matrix U after each time step in a three-dimensional matrix:
U_3d = zeros(Nt,Ny,Nx)
for nt = 1:Nt
...
U_3d(nt,:,:) = U;
end

Iniciar sesión para comentar.

Categorías

Más información sobre Numerical Integration and Differentiation en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by