sol = solve((log(z))^4 - ((21.233/53.989)^3)*z > 0, z, 'ReturnConditions', true)
sol = struct with fields:
z: x
parameters: x
conditions: x < (36893488147419103232*lambertw(-1, -(8766535218140255^(1/4)*144115188075855872^(3/4))/576460752303423488)^4)/8766535218140255 & 6121026514868073/22517998136...
When writing the function in MATLAB, please use `log(z)^4` instead of `(log(z))^4`. Additionally, your work should apply to all \( x \) in the range \((e^e, \infty)\), not just a specific region. I believe the end of your work should align with Sam's work. I want to thank both of you for your efforts.
While your analysis is thorough, it appears that you've mainly focused on situations where the inequality can be replaced by an equation, rather than identifying where the inequality holds true. If we could also address those instances, it would provide a more comprehensive understanding of the scenario.Also ,The paper discussing this problem states that the inequality does not hold for \( x \) in the interval \((e^{482036}, \infty)\).
No se puede completar la acción debido a los cambios realizados en la página. Vuelva a cargar la página para ver el estado actualizado.
Translated by
Seleccione un país/idioma
Seleccione un país/idioma para obtener contenido traducido, si está disponible, y ver eventos y ofertas de productos y servicios locales. Según su ubicación geográfica, recomendamos que seleccione: .
También puede seleccionar uno de estos países/idiomas:
Cómo obtener el mejor rendimiento
Seleccione China (en idioma chino o inglés) para obtener el mejor rendimiento. Los sitios web de otros países no están optimizados para ser accedidos desde su ubicación geográfica.