Solving a constrained optimization problem
8 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Erick
el 23 de Abr. de 2015
Comentada: Erick
el 1 de Mayo de 2015
I am trying to solve an optimization problem in matlab:
minimize( sum_{i,j}(f(M(i,j))) + err )
subject to: - norm(M) < err
- err > 0
- if j == i+1: M(i,j) > 1
- if j == i-1: M(i,j) < -1
- else: -1 <= M(i,j) <= 1
where: - f is a non convex function in general
- M is an n by n matrix
Can anyone point me which function I should use?
0 comentarios
Respuesta aceptada
Alan Weiss
el 24 de Abr. de 2015
If you look in the Optimization Decision Table you see that for a constrained nonlinear problem you should use fmincon. The constraint norm(M) < err is a nonlinear inequality constraint. The other constraints on M(i,j) are bound constraints.
Good luck,
Alan Weiss
MATLAB mathematical toolbox documentation
3 comentarios
Alan Weiss
el 30 de Abr. de 2015
That sounds right, with the proviso that you make
A = [M(:);err];
I mean, make a column vector, using a semicolon before err.
Alan Weiss
MATLAB mathematical toolbox documentation
Más respuestas (0)
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!