Solving a constrained optimization problem

8 visualizaciones (últimos 30 días)
Erick
Erick el 23 de Abr. de 2015
Comentada: Erick el 1 de Mayo de 2015
I am trying to solve an optimization problem in matlab:
minimize( sum_{i,j}(f(M(i,j))) + err )
subject to: - norm(M) < err
- err > 0
- if j == i+1: M(i,j) > 1
- if j == i-1: M(i,j) < -1
- else: -1 <= M(i,j) <= 1
where: - f is a non convex function in general
- M is an n by n matrix
I looked at the constrained optimization toolbox but could not find how to solve this problem.
Can anyone point me which function I should use?

Respuesta aceptada

Alan Weiss
Alan Weiss el 24 de Abr. de 2015
If you look in the Optimization Decision Table you see that for a constrained nonlinear problem you should use fmincon. The constraint norm(M) < err is a nonlinear inequality constraint. The other constraints on M(i,j) are bound constraints.
Good luck,
Alan Weiss
MATLAB mathematical toolbox documentation
  3 comentarios
Alan Weiss
Alan Weiss el 30 de Abr. de 2015
That sounds right, with the proviso that you make
A = [M(:);err];
I mean, make a column vector, using a semicolon before err.
Alan Weiss
MATLAB mathematical toolbox documentation
Erick
Erick el 1 de Mayo de 2015
That works. Thank you for your help!

Iniciar sesión para comentar.

Más respuestas (0)

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by