f =
Hi @Fatemeh,
Addressing your query about, “ assist me with solving this maximization problem in MATLAB”, I first defined the symbolic function 'f' in terms of variables 'r' and 't'. It then finds the maximum value of 'f' and the corresponding optimal values of 'r' and 't'. Finally, it converts the symbolic solutions to numeric values and displays the optimal values of 'r' and 't'. Here is updated code,
a = 1; % Assigning a value to 'a'
syms r t; % Define symbolic variables 'r' and 't'
f = -(1/((1 + 2*a)^2)) * t * (-3 - 2*r + t - 5*a + 2*t*a + 2*sqrt(2*(2 + r - t) + (-2 + 2*r^2 + t)/(1 + a)) + 2*a*sqrt(2*(2 + r - t) + (-2 + 2*r^2 + t)/(1 + a))) * (-4*r + 2*a*(-2 + sqrt(2*(2 + r - t) + (-2 + 2*r^2 + t)/(1 + a))) + 3*(-1 + sqrt(2*(2 + r - t) + (-2 + 2*r^2 + t)/(1 + a))));
% Find the maximum value of 'f' with respect to 'r' and 't'
max_f = max(max(f));
% Find the optimal values of 'r' and 't' that maximize 'f'
[sol_r, sol_t] = solve(f == max_f, [r, t]);
% Convert symbolic solutions to numeric values
sol_r = double(sol_r);
sol_t = double(sol_t);
% Display the optimal values of 'r' and 't'
disp(['Optimal value of r: ', num2str(sol_r)]);
disp(['Optimal value of t: ', num2str(sol_t)]);
Please see attached results.
Hope, this helps resolve your problem. Please let me know if you have any further questions.