"Unable to compute number of steps from 0 to n by 1" error for symbolic integration
14 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Im trying to do numerical integration with the following function that have several parameters. My issue is that whenever I assign n as symbolic symbol, I got the error "Unable to compute number of steps from 0 to n by 1". I Also tried using symsum instead of arrayfunc and I got the same error.
n=60;
syms u_f positive
syms lam_f positive
syms z positive
syms alpha positive
syms sigma positive
syms ep positive
syms z positive
syms b positive
syms d positive
assume (ep <1 & ep>0)
%assume(z < u_f )
%syms n
% assume (n, {'postive', 'integer'})
nCk = @(n,kVec,z)arrayfun(@(k)lam_f*exp(-lam_f*(alpha-b)).*(nchoosek(n,k)*(1*ep).^(k).*((1-ep)*(0.5+0.5*erf((z-u_f-d)/(sqrt(2)*sigma)))).^(n-(k)).*(0.5+0.5*erf((z-alpha-u_f-d)/(sqrt(2)*sigma)))^k),kVec);
%F(z,u_f,lam_f,sigma,ep)=int(nCk(n,0:n,z),alpha,0, z);
F(z,u_f,lam_f,sigma,ep,b,d)=vpaintegral(nCk(n,0:n,z),alpha,b, z);
result=vpaintegral( 1-sum(vpa(F(z,0.4,7.1111,0.009,0.1,2,2))),0,Inf,'ArrayValued',true,'RelTol', 1e-5, 'AbsTol', 1e-4)
My end goal is writing a user defined function like the following:
function result=norm_expo_gang_function_mean_handle(n,uu,lamm,oo,epp,bb,dd)
%(u,lam,o,b,d,ep,sz1,sz2)
syms F(z,u_f,lam_f,sigma_o,b,d,ep)
syms u_f positive
syms lam_f positive
syms z positive
syms alpha_o positive
syms sigma_o positive
syms ep positive
syms z positive
syms b positive
syms d positive
assume (ep <1 & ep>0)
assume(z,'positive')
assume(lam_f,'positive');
assume(u_f,'positive');
assume(sigma_o,'positive');
assume(b,'positive');
assume(d,'positive');
%assume(n,{'positive','integer'});
assume (ep <1 & ep>0)
nCk = @(n,kVec,z)arrayfun(@(k)lam_f*exp(-lam_f*(alpha-b)).*(nchoosek(n,k)*(1*ep).^(k).*((1-ep)*(0.5+0.5*erf((z-u_f-d)/(sqrt(2)*sigma)))).^(n-(k)).*(0.5+0.5*erf((z-alpha-u_f-d)/(sqrt(2)*sigma)))^k),kVec);
%nCk = @(n,kVec,z)arrayfun(@(k)lam_f*exp(-lam_f*(alpha-b)).*(nchoosek(n,k)*(1*ep).^(k).*((1-ep)*(0.5+0.5*erf((z-u_f-d)/(sqrt(2)*sigma)))).^(n-(k)).*(0.5+0.5*erf((z-alpha-u_f-d)/(sqrt(2)*sigma)))^k),kVec);
%F(z,u_f,lam_f,sigma,ep)=int(nCk(n,0:n,z),alpha,0, z);
F(z,u_f,lam_f,sigma_o,ep,b,d)=vpaintegral(nCk(n,0:n,z),alpha,b, z);
result=vpaintegral( 1-sum(vpa(F(z,uu,lamm,oo,epp,bb,dd,n))),0,Inf,'ArrayValued',true,'RelTol', 1e-5, 'AbsTol', 1e-4);
%F(z,u_f,lam_f,sigma_o,b,d,ep,n) = @(n,kVec,z)arrayfun(@(k)lam_f*exp(-lam_f*(alpha_o-b)).*(nchoosek(n,k)*(1*ep).^(k).*((1-ep)*(0.5+0.5*erf((z-u_f-d)/(sqrt(2)*sigma_o)))).^(n-(k)).*(0.5+0.5*erf((z-alpha_o-u_f-d)/(sqrt(2)*sigma_o)))^k),kVec);
end
0 comentarios
Respuestas (1)
Walter Roberson
el 20 de Sept. de 2024
syms z positive
syms b positive
%...
F(z,u_f,lam_f,sigma,ep,b,d)=vpaintegral(nCk(n,0:n,z),alpha,b, z);
You are trying to vpaintegral() with a symbolic lower and upper bound. When you vpaintegral() the bounds must be definite numbers
8 comentarios
Walter Roberson
el 23 de Sept. de 2024
nested vpaintegral calls are less accurate than vpa of a complete integral.
Also you were attempting to vpaintegral with symbolic boundaries, which is not permitted
Ver también
Categorías
Más información sobre Linear Algebra en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!