
curve fitting using lsqcurvefit on kinetic data for parameter estimation
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
federico drudi
el 5 de Nov. de 2024
Comentada: Star Strider
el 6 de Nov. de 2024
Hello,
I am fitting some experimental data (protein digestion kinetics) to the following model y = ymax+(ymax-y0)*exp(-k*t) using lsqcurvefit, were t is time (independent variable), y is concentration (dependent variable), and k, ymax and y0 are coefficient representing, respectively, the rate of the reaction, the maximum final concentration and the initial concentration.
The fitting seems to work well but the issue I cannot understand is why I get values of ymax higher than y0 when it should be the opposite.
Below you can find the code I'm using, do you have any idea/suggestion on where the issue could be?
Thanks a lot in advance for the hepl!!
xdata=[0; 30; 60; 90; 120; 180; 240];
ydata=[1.607; 2.346; 2.621; 2.967; 3.238; 3.479; 3.566];
coef = ["ymax","y0","k","R2","R2adj","RMSE"];
fun = @(x,xdata) x(1)+(x(1)-x(2))*exp(-x(3)*xdata)
x0 = [1,1,0.01];
lb = [0,0,0];
ub = [10,10,0.5];
[x,resnorm,residual,exitflag,output] = lsqcurvefit(fun,x0,xdata,ydata,lb,ub);
figure(1);
plot(xdata,ydata,'o',xdata,fun(x,xdata),'-');
SSresid = sum(residual.^2);
SStotal = (numel(ydata)-1) * var(ydata);
R = 1 - SSresid/SStotal;
Radj = 1 - (SSresid/SStotal) * ((numel(ydata)-1)/(numel(ydata)-1-1));
RMSE = rmse(fun(x,xdata),ydata);
r = [x R Radj RMSE];
coef = [coef;r];
figure(2);
scatter(xdata,residual);
coef
0 comentarios
Respuesta aceptada
Star Strider
el 5 de Nov. de 2024
The model itself is a bit misleading.
A better option might be:

That produces an equivalent fit with parameters that make sense.
xdata=[0; 30; 60; 90; 120; 180; 240];
ydata=[1.607; 2.346; 2.621; 2.967; 3.238; 3.479; 3.566];
coef = ["ymax","y0","k","R2","R2adj","RMSE"];
% fun = @(x,xdata) x(1)+(x(1)-x(2))*exp(-x(3)*xdata)
fun = @(x,xdata) x(2)+(x(1)-x(2))*(1-exp(-x(3)*xdata));
x0 = [1,1,0.01];
lb = [0,0,0];
ub = [10,10,0.5];
[x,resnorm,residual,exitflag,output] = lsqcurvefit(fun,x0,xdata,ydata,lb,ub);
x
figure(1);
plot(xdata,ydata,'o',xdata,fun(x,xdata),'-');
SSresid = sum(residual.^2);
SStotal = (numel(ydata)-1) * var(ydata);
R = 1 - SSresid/SStotal;
Radj = 1 - (SSresid/SStotal) * ((numel(ydata)-1)/(numel(ydata)-1-1));
RMSE = rmse(fun(x,xdata),ydata);
r = [x R Radj RMSE];
coef = [coef;r];
figure(2);
scatter(xdata,residual);
coef
.
2 comentarios
Más respuestas (1)
Umang Pandey
el 5 de Nov. de 2024
Hi Federico,
Looking at your xdata and ydata, your ydata is increasing with increase in xdata, but the delta for each consecutive increase decreases, implying it is fitting "y = a - bexp(-kx)" where a,b,k are > 0. Since you are expecting "ymax > y0", your ydata should have been decreasing with increase in xdata, with the delta also decreasing for each consecutive decrease.
I have attached the following curves for your reference:
Case 1 : y = 4 - 3*exp(-2x) ; Assumptions : ymax = 4, y0 = 7, k = 2
Case 2 : y = 4 + 3*exp(-2x) ; Assumptions : ymax = 4, y0 = 1, k = 2

As you can see from the curve, your data/curve you obtained fits the first case.
Hope this helps!
Best,
Umang
0 comentarios
Ver también
Categorías
Más información sobre Develop Apps Using App Designer en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!