rotation of 3D XYZ points by an ijk unit vector

10 visualizaciones (últimos 30 días)
Andrew
Andrew el 6 de Nov. de 2024
Editada: Bruno Luong el 7 de Nov. de 2024
I have a XYZ co-ordinate points that I would like to rotate around the origin from one vector of a defined plane to another. For example I have a unit surface vector of a plane of [0.9997 -0.0240 -0.0053] and I would like to rotation my points so that this planes normal is parallel to the X axis [1 0 0].
How can I take my [X Y Z] co-ordinates and rotate them in 3 dimensions from vector [0.9997 -0.0240 -0.0053] to [1 0 0]

Respuesta aceptada

Bruno Luong
Bruno Luong el 6 de Nov. de 2024
Editada: Bruno Luong el 6 de Nov. de 2024
% source and target unit vectors
u = [0.9997; -0.0240; -0.0053] ; u = u/norm(u);
v = [1; 0; 0]; v = v/norm(v);
% Compute 3 x 3 rotation matrix R so that R*u is v
% see here foe ref of angle calculation
% https://www.mathworks.com/matlabcentral/answers/101590-how-can-i-determine-the-angle-between-two-vectors-in-matlab?s_tid=srchtitle
M = makehgtform("axisrotate",cross(u,v),2*atan(norm(u-v)/norm(u+v)));
R = M(1:3,1:3);
XYZ = [u, randn(3,6)], % (3 x n) your n data point coordinates
XYZ = 3×7
0.9997 0.6224 0.2960 1.1053 0.4341 0.6850 0.5836 -0.0240 -1.6776 -1.3716 -0.9371 1.1838 -0.0971 -0.5146 -0.0053 -1.1380 -1.2065 -0.3211 0.1301 -0.7294 -0.0976
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
XYZ_Rotates = R*XYZ % observe the first vector u after rotation becomes v
XYZ_Rotates = 3×7
1.0000 0.6685 0.3352 1.1291 0.4049 0.6910 0.5963 -0.0000 -1.6621 -1.3641 -0.9103 1.1939 -0.0806 -0.5004 -0.0000 -1.1346 -1.2049 -0.3151 0.1324 -0.7257 -0.0944
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
  1 comentario
Bruno Luong
Bruno Luong el 7 de Nov. de 2024
Editada: Bruno Luong el 7 de Nov. de 2024
Note that the choice here of axis rotation vector r := cross(u,v) is not unique; but it's the one that implies a smallest rotation angle.
Any unit vector that has the same distance to u and v can be setected as axis of rotation.
For example normalized (u+v)/2. The angle here is pi, the largest possible choice.
% source and target unit vectors
u = [0.9997; -0.0240; -0.0053] ; u = u/norm(u);
v = [1; 0; 0]; v = v/norm(v);
% Compute 3 x 3 rotation matrix R so that R*u is v
M = makehgtform("axisrotate",(u+v)/2,pi);
R = M(1:3,1:3);
XYZ = [u, randn(3,6)], % (3 x n) your n data point coordinates
XYZ = 3×7
0.9997 0.3643 -1.2357 0.2286 -0.0913 0.7236 -0.7353 -0.0240 0.3797 -1.1702 -0.3897 -1.1961 -0.6616 -0.5746 -0.0053 0.7244 0.2336 -0.6793 0.9005 1.2260 -1.4620
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
XYZ_Rotates = R*XYZ % observe the first vector u after rotation becomes v
XYZ_Rotates = 3×7
1.0000 0.3513 -1.2084 0.2415 -0.0674 0.7327 -0.7135 -0.0000 -0.3883 1.1996 0.3841 1.1980 0.6441 0.5920 0.0000 -0.7263 -0.2271 0.6781 -0.9001 -1.2298 1.4658
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>

Iniciar sesión para comentar.

Más respuestas (0)

Productos


Versión

R2023a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by