Negative D2 score on training data after lassoglm fit

14 visualizaciones (últimos 30 días)
T0m07
T0m07 el 17 de Nov. de 2024 a las 22:03
Editada: T0m07 el 17 de Nov. de 2024 a las 22:03
How can the deviance from a null model (i.e. betas all equal zero) be lower than the deviance from the full model? Surely lassoglm should choose betas all zero in this case?
From the code below, my d2Train is -0.0808.
[B, FitInfo] = lassoglm(table2array(indat.params.trainDataX), indat.params.trainDataY(:, minInd), 'poisson', 'Lambda', indat.combTable.bestLambdas(minInd), 'Alpha', indat.combTable.bestAlphas(minInd));
predCountsTrain = calculateRates(table2array(indat.params.trainDataX),B,FitInfo.Intercept)+eps;
predDevianceTrain = calculateDeviance(indat.params.trainDataY(:, minInd),predCountsTrain);
nullCountsTrain = calculateRates(table2array(indat.params.trainDataX),zeros(size(B)),FitInfo.Intercept)+eps;
nullDevianceTrain = calculateDeviance(indat.params.trainDataY(:, minInd),nullCountsTrain);
d2Train = 1 - (predDevianceTrain ./ nullDevianceTrain);
function rates = calculateRates(x,y,int)
rates = exp((x * y) + int);
end
function dev = calculateDeviance(observed,predicted)
scaledLogRatio = log(observed./predicted).*observed;
rawDifference = observed-predicted;
diffOfTerms = scaledLogRatio - rawDifference;
dev = nansum(diffOfTerms)*2;
end

Respuestas (0)

Categorías

Más información sobre Descriptive Statistics en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by