Having issues going from trainNetwork to trainnet

6 visualizaciones (últimos 30 días)
psousa
psousa el 19 de Nov. de 2024
Editada: Cris LaPierre el 20 de Nov. de 2024
I've attached 3 files(see post below for latest version of these files):
  • trainNetworkEXAMPLE - my original trainNetwork implementation
  • trainnetEXAMPLE - the trainnet implementation
  • example.csv - data file with predictors and targets
The codes for the two examples are identical, the difference is only in the formatting of the input matrices.
trainNetworkEXAMPLE works as expected.
trainnetEXAMPLE works but convergence of the solver is different and training stops earlier.
Both codes end with
Training stopped: Met validation criterion
What am I getting wrong?
  1 comentario
Cris LaPierre
Cris LaPierre el 20 de Nov. de 2024
Editada: Cris LaPierre el 20 de Nov. de 2024
You have changed the question. It is better to ask a new question.

Iniciar sesión para comentar.

Respuestas (1)

Cris LaPierre
Cris LaPierre el 19 de Nov. de 2024
Editada: Cris LaPierre el 19 de Nov. de 2024
You have a vector sequence, so your layout should be s-by-c matrices, where s and c are the numbers of time steps and channels (features) of the sequences, respectively.
Withouth knowing more about your data, it looks like you have a vector sequence containing 1028 timesteps and 4 channels. You should therefore use the same code for creating XTrain, XValidation, TTrain, and TValidation as in your trainNetwork example. See here.
% Predictor values
XTrain = (XStandardized(1:numTimeStepsTrain,:));
XValidation = XStandardized(end-numTimeStepsTest+1:end,:);
% Target values
TTrain = (TStandardized(1:numTimeStepsTrain,:));
TValidation = TStandardized(end-numTimeStepsTest+1:end,:);
  3 comentarios
Cris LaPierre
Cris LaPierre el 19 de Nov. de 2024
Editada: Cris LaPierre el 19 de Nov. de 2024
I'd remove this unnecessary code in your trainnet example:
% Predictor values
XTrain = XTrain;
XValidation = XValidation;
% Target values
TTrain = TTrain;
TValidation = TValidation;
psousa
psousa el 20 de Nov. de 2024
I left that there so that codes are very similar when comparing side-by-side.
Did you run both codes and see the differences in results?
Thank you for your answers!

Iniciar sesión para comentar.

Categorías

Más información sobre Deep Learning Toolbox en Help Center y File Exchange.

Productos


Versión

R2024b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by