Having issues going from trainNetwork to trainnet
    5 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
I've attached 3 files(see post below for latest version of these files):
- trainNetworkEXAMPLE - my original trainNetwork implementation
 - trainnetEXAMPLE - the trainnet implementation
 - example.csv - data file with predictors and targets
 
The codes for the two examples are identical, the difference is only in the formatting of the input matrices.
trainNetworkEXAMPLE works as expected.
trainnetEXAMPLE works but convergence of the solver is different and training stops earlier.
Both codes end with 
Training stopped: Met validation criterion
What am I getting wrong? 
1 comentario
  Cris LaPierre
    
      
 el 20 de Nov. de 2024
				
      Editada: Cris LaPierre
    
      
 el 20 de Nov. de 2024
  
			You have changed the question. It is better to ask a new question.
Respuestas (1)
  Cris LaPierre
    
      
 el 19 de Nov. de 2024
        
      Editada: Cris LaPierre
    
      
 el 19 de Nov. de 2024
  
      You have a vector sequence, so your layout should be s-by-c matrices, where s and c are the numbers of time steps and channels (features) of the sequences, respectively.
Withouth knowing more about your data, it looks like you have a vector sequence containing 1028 timesteps and 4 channels. You should therefore use the same code for creating XTrain, XValidation, TTrain, and TValidation as in your trainNetwork example. See here.
% Predictor values
XTrain = (XStandardized(1:numTimeStepsTrain,:));
XValidation = XStandardized(end-numTimeStepsTest+1:end,:);
% Target values 
TTrain = (TStandardized(1:numTimeStepsTrain,:));
TValidation = TStandardized(end-numTimeStepsTest+1:end,:);
3 comentarios
  Cris LaPierre
    
      
 el 19 de Nov. de 2024
				
      Editada: Cris LaPierre
    
      
 el 19 de Nov. de 2024
  
			I'd remove this unnecessary code in your trainnet example:
% Predictor values
XTrain = XTrain;
XValidation = XValidation;
% Target values 
TTrain = TTrain;
TValidation = TValidation;
Ver también
Categorías
				Más información sobre Deep Learning Toolbox en Help Center y File Exchange.
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!