Warning: Non-finite result. The integration was unsuccessful. Singularity likely.

7 visualizaciones (últimos 30 días)
Hi i run a code thta include two doyble integration i recieve e message Warning: Non-finite result. The integration was unsuccessful.
but the final resulta are finite what happen ? the results are reliably ?
the main code is
currentMoM()
f = 300000000
N = 40
ra = 1
k0 = 6.2832
Z0 = 376.9911
lambda = 1
ans = NaN + NaNi
Warning: Non-finite result. The integration was unsuccessful. Singularity likely.
ans = NaN + NaNi
Unrecognized function or variable 'Efieldin'.

Error in solution>@(x)(4./(Z0.*k0)).*triangle_basisn(x,index_i).*Efieldin(x) (line 37)
func=@(x)(4./(Z0.*k0)).*triangle_basisn(x,index_i).*Efieldin(x);

Error in integralCalc>iterateScalarValued (line 334)
fx = FUN(t);

Error in integralCalc>vadapt (line 148)
[q,errbnd] = iterateScalarValued(u,tinterval,pathlen, ...

Error in integralCalc (line 77)
[q,errbnd] = vadapt(vfunAB,interval, ...

Error in integral (line 87)
Q = integralCalc(fun,a,b,opstruct);

Error in solution>currentMoM (line 38)
gm(index_i) =integral(func,Phi0(index_i),Phi0(index_i)+2*pi/N);
function [Is]=currentMoM()
%UNTITLED2 Summary of this function goes here
% Detailed explanation goes here
[f,N,ra,k0,Z0,lambda] = parameter()
gamma_const=1.781;
%Phi0=zeros(N);
e=exp(1);
dftm=2.*pi./N;
for jj = 1:N
Phi0(jj)=(jj-1).*dftm;
end
% delta_c(i) = sqrt((pos(i,1) - pos(i+1,1))^2 + (pos(i,2) - pos(i+1,2))^2);
lmn = zeros(N);
%zmn = zeros(N);
gm = zeros(1,N);
zmn = zeros(N);
%vim = zeros(1,N);
%vsn = zeros(1,N);
coeif=(Z0.*k0./4).*ra.*dftm;
coeifn=(Z0./2).*sin(k0.*ra.*dftm./2);
for index_i = 1:N
for index_j = 1:N
if index_i == index_j
funa = @(x,y)triangle_basisn(x,index_i).*triangle_basisn(y,index_j).*ra.*(1-j.*(2/pi).*log((gamma_const./2).*k0.*ra.*sqrt(2-2.*cos(x-y)))) ;
funa(Phi0(index_i),Phi0(index_j))
lmn(index_i,index_j) =integral2(funa,Phi0(index_i),Phi0(index_i)+2*pi/N,Phi0(index_j),Phi0(index_j)+2*pi/N);
lmn(index_i,index_j)
else
funb = @(x,y)triangle_basisn(x,index_i).*triangle_basisn(y,index_j).*ra.*besselh(0,2,k0.*ra.*sqrt(2-2.*cos(x-y)));
lmn(index_i,index_j) =integral2(funb,Phi0(index_i),Phi0(index_i)+2*pi/N,Phi0(index_j),Phi0(index_j)+2*pi/N);
func=@(x)(4./(Z0.*k0)).*triangle_basisn(x,index_i).*Efieldin(x);
gm(index_i) =integral(func,Phi0(index_i),Phi0(index_i)+2*pi/N);
zmn(index_i,index_j) = lmn(index_i,index_j) ;
end
%vim(index_i) = delta_c(index_i) * exp(j*k0*(xm(index_i)*cos(phi_i)+ym(index_i)*sin(phi_i)));
%vsn(index_i) = delta_c(index_i) * exp(j*k0*(xm(index_i)*cos(phi_s)+ym(index_i)*sin(phi_s)));
end
end
W = linsolve(zmn,gm');
for ii=1:N
Is(ii)=W(ii);
end
y= Is;
end
function [f,N,ra,k0,Z0,lambda] = parameter()
%UNTITLED Summary of this function goes here
c0=3e8;
Z0=120.*pi;
ra=1;
N=40;
f=300e6;
lambda=c0./f;
k0=2*pi./lambda;
end
function z=triangle_basisn(phi,kk)
[~,N,ra,k0,Z0,lambda] = parameter();
%Phin=zeros(N)
dftm=2.*pi./N;
%for jj = 1:N+1
%Phi0(jj)=(jj-1).*dftm;
%end
%Phin=Phi0
if ( phi >=(kk-1).*dftm ) & ( phi <=kk.*dftm);
z=(phi-(kk-1).*dftm)./dftm;
elseif (phi >= kk.*dftm) & (phi <= (kk+1).*dftm);
z=((kk+1).* dftm -phi)./dftm;
else
z=0 ;
end
end
thank you
Goerge
  32 comentarios

Iniciar sesión para comentar.

Respuestas (0)

Categorías

Más información sobre Loops and Conditional Statements en Help Center y File Exchange.

Productos


Versión

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by