Trying to create code which solves a BVP using a second-order finite difference scheme and Newton-Raphson method
31 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
% Code to calculate the solution to a
% nonlinear BVP with Dirichlet and Robin BCs
% Some physical parameter.
mu=10;
% Define the interval over which solution is calculated.
a=0; b=1;
% Define N.
N=500;
% Define the grid spacing.
h=(b-a)/N;
% Define the grid. Note that there is no need to solve at x=a.
x = reshape(linspace(a+h,b,N),N,1);
% Define an initial guess for the solution
% of the BVP (make sure it is a column vector)
U=1.0 - 0.2*x
;
% Define a tolerance for the termination of Newton-Raphson.
tol=10^(-8);
% Ensure that F is such that at least one iteration is done.
F=ones(N,1);
J=zeros(N,N);
% Store the initial guess in SOL.
SOL= U;
% Loop while the norm(F) is greater than tol.
while (norm(F)>tol)
%% Define F(u).
% Boundary conditions.
F(N)=U(N-2)-4*U(N-1)+3*U(N)+2*h*(U(N))^3;
% Finite difference approximation to ODE at interior nodes.
F(1)=2*(U(2)+1-2*U(1)+h*exp(U(1))*(U(2)-1)-2*h^(2)*mu*sin(2*pi*x(1)));
for i=2:N-1
F(i)=2*(U(i+1)+U(i-1)-2*U(i)+h*exp(U(i))*(U(i+1)-U(i-1))-2*h^(2)*mu*sin(2*pi*x(i)));
end
%% Define the Jacobian J.
% First row corresponds to BC at x=0.
J(1,1)=(-4)+h*exp(U(1))*(U(2)-1);
J(1,2)=2+h*exp(U(1));
% Last row corresponds to BC at x=1.
J(N,N-2)=1;
J(N,N-1)=-4;
J(N,N)=3+6*h*(U(N))^2;
% Intermediate rows correspond to F(i)=...
for i=2:(N-1)
% Diagonal entries.
J(i,i)=(-4)+h*exp(U(i))*(U(i+1)-U(i-1));
% There may be off-diagonal entries, check your calculation.
J(i,i-1)=2-h*exp(U(i));
J(i,i+1)=2+h*exp(U(i));
end
%% Having defined F and J, update the approximate solution to
% the difference equations.
U=U-J\F ;
%% Store the new approximation.
SOL=[SOL,U];
end
%% Insert your plot commands here.
figure;
plot(x, SOL(:, 1), 'r--', 'LineWidth', 1.5); hold on;
for k = 2:size(SOL,2)
plot(x, SOL(:, k), 'LineWidth', 1.5);
end
xlabel('x');
ylabel('U(x)');
title('Convergence of Newton-Raphson Iterations');
legend('Initial Guess', 'Iterations');
grid on;
This is my code for trying to solve the BVP
u'' + exp(u)u' = mu*sin(2*pi*x), u(0) = 1, u'(1) + (u(1))^3
with a second-order finite difference scheme and the Newton-Raphson method, I was given unfinished code and this is my finished version. When I run the code and it plots the iterations I can clearly see something isn't right as I know what the end result should approximately look like, but I can't see where I've gone wrong. Also, I cannot use certain inbuilt MATLAB functions, only what is already in the code.
Any help?
2 comentarios
Torsten
el 2 de Dic. de 2024 a las 21:46
For comparison with your approximations. It's always good to know what you are aiming at.
mu = 10;
xmesh = linspace(0,1,20);
solinit = bvpinit(xmesh, @(x)[1-0.2*x;-0.2]);
fun = @(x,y)[y(2);-exp(y(1))*y(2)+mu*sin(2*pi*x)];
bc = @(ya,yb)[ya(1)-1;yb(2)+yb(1)^3];
sol = bvp4c(fun, bc, solinit);
plot(sol.x,sol.y(1,:))
Respuestas (1)
Torsten
el 2 de Dic. de 2024 a las 22:09
Editada: Torsten
el 2 de Dic. de 2024 a las 22:31
% Code to calculate the solution to a
% nonlinear BVP with Dirichlet and Robin BCs
% Some physical parameter.
mu = 10;
% Define the interval over which solution is calculated.
a = 0; b = 1;
% Define N.
N = 50;
% Define the grid spacing.
h = (b-a)/(N-1);
% Define the grid. Note that there is no need to solve at x=a.
x = linspace(a,b,N).';
% Define an initial guess for the solution
% of the BVP (make sure it is a column vector)
U = 1.0 - 0.2*x;
% Define a tolerance for the termination of Newton-Raphson.
tol = 1e-8;
% Ensure that F is such that at least one iteration is done.
F = ones(N,1);
J = zeros(N,N);
% Store the initial guess in SOL.
SOL = U;
% Loop while the norm(F) is greater than tol.
while (norm(F)>tol)
%% Define F(u).
% Boundary conditions.
F(1) = U(1)-1.0;
F(N) = (-2*h*U(N)^3-2*U(N)+2*U(N-1))/h^2-exp(U(N))*U(N)^3-mu*sin(2*pi*x(N));
% Finite difference approximation to ODE at interior nodes.
for i=2:N-1
F(i) = (U(i+1)-2*U(i)+U(i-1))/h^2 + exp(U(i))*(U(i+1)-U(i-1))/(2*h)-mu*sin(2*pi*x(i));
end
%% Define the Jacobian J.
% First row corresponds to BC at x=0.
J(1,1) = 1.0;
% Last row corresponds to BC at x=1.
J(N,N-1) = 2/h^2;
J(N,N) = -6*U(N)^2/h-2/h^2-exp(U(N))*U(N)^3-3*exp(U(N))*U(N)^2;
% Intermediate rows correspond to F(i)=...
for i=2:N-1
% Diagonal entries.
J(i,i-1) = 1/h^2-exp(U(i))/(2*h);
% There may be off-diagonal entries, check your calculation.
J(i,i) = -2/h^2+exp(U(i))*(U(i+1)-U(i-1))/(2*h);
J(i,i+1) = 1/h^2+exp(U(i))/(2*h);
end
%% Having defined F and J, update the approximate solution to
% the difference equations.
U = U-J\F ;
%% Store the new approximation.
SOL = [SOL,U];
end
%% Insert your plot commands here.
figure;
plot(x, SOL(:, 1), 'r--', 'LineWidth', 1.5); hold on;
for k = 2:size(SOL,2)
plot(x, SOL(:, k), 'LineWidth', 1.5);
end
xlabel('x');
ylabel('U(x)');
title('Convergence of Newton-Raphson Iterations');
legend('Initial Guess', 'Iterations');
grid on;
6 comentarios
Torsten
hace 16 minutos
Editada: Torsten
hace 7 minutos
You can also use the formula from your notes, but introducing the ghostpoint x(N)+h with value U(N+1) and approximation the first-order derivative in x(N) as (U(N+1)-U(N-1))/(2*h) as I did doesn't destroy the tridiagonal Jacobian and is also second-order accurate.
But make an attempt to use your formula - I'll look over the modified code to see whether you did it right.
By the way: The remark is on page 116.
And don't forget brackets around 2h when inplementing your difference approximation. Or multiply the equation by 2h as you did in your former code.
Ver también
Categorías
Más información sobre Ordinary Differential Equations en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!