How to make my code run faster
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Hi, i'm trying to solve a non linear system of five equations, they are very long equations that includes three parameter, lambda, sigma, and V, all three of the equation are of the form : 1/ lambda + 1/sigma + 1/V + 1/(lambda*sigma) + 1/(lambda^2) = C.
I tried solving it symbolically but it's too complicated, so i'm now trying to solve the sustem numerically. However when using the function solve, the code runs for almost 5 to 6 minutes then shut down. I have run my code step by step and it is the solve function that takes forever. I also tried using vpasolve and fsolve without succes, in those case the code doesn't work it keeps saying the object put as equatiosn are not symbolic.
Here's my code :
clc; close all; clear
%% Les données (input)
l = 30.6e-3; % Epaisseur
f = 100e3; % Frecq centrale
c0 = 340; % Célérité ds l'air
rho_0 = 1.204; % densité air
eta = 18.5e-6; % Viscosité air
gamma = 1.4; % constante GP
Pr = 0.707; % Nombre de Prandlt
por = 0.95; % Porosité
tor = 1.27; % Tortuosité
%% Coefficients de calcul
xValue = double((2*pi*f*l*sqrt(2)/(2*c0))*(sqrt(eta/(rho_0*2*pi*f)))*(1+(gamma-1)/(3*sqrt(Pr))));
y1Value = double((l*eta/(rho_0*c0))*((gamma-1)/(3*Pr)+3));
y2Value = double((l*eta/(rho_0*c0))*(4*(gamma-1)/(3*sqrt(Pr))));
y3Value = double(-(l*eta/(2*rho_0*c0))*(1+(gamma-1)/(3*sqrt(Pr)))^2);
z1Value = double((2*pi*f*l*sqrt(2)/(2*c0))*((sqrt(eta/(rho_0*2*pi*f)))^3)*(15*(gamma-1)/(4*27*Pr)+(15/4)));
z2Value = double((2*pi*f*l*sqrt(2)/(2*c0))*((sqrt(eta/(rho_0*2*pi*f)))^3)*(6*(gamma-1)/(9*Pr)+6*(gamma-1)/(3*sqrt(Pr))));
z3Value = double(- (2*pi*f*l*sqrt(2)/(24*c0))*((sqrt(eta/(rho_0*2*pi*f)))^3)*(1+(gamma-1)/(3*sqrt(Pr)))*((gamma-1)/(3*sqrt(Pr))+3));
z4Value = double(- (2*pi*f*l*sqrt(2)/(24*c0))*((sqrt(eta/(rho_0*2*pi*f)))^3)*(1+(gamma-1)/(3*sqrt(Pr)))*(4*(gamma-1)/(3*sqrt(Pr))));
z5Value = double((2*pi*f*l*sqrt(2)/(8*c0))*((sqrt(eta/(rho_0*2*pi*f)))^3)*(1+(gamma-1)/(3*sqrt(Pr)))^3);
z6Value = double(- (2*pi*f*l*sqrt(2)/(48*c0))*((sqrt(eta/(rho_0*2*pi*f)))^3)*(1+(gamma-1)/(3*sqrt(Pr)))*((gamma-1)/(3*sqrt(Pr))+3));
z7Value = double(- (2*pi*f*l*sqrt(2)/(48*c0))*((sqrt(eta/(rho_0*2*pi*f)))^3)*(1+(gamma-1)/(3*sqrt(Pr)))*(4*(gamma-1)/(3*sqrt(Pr))));
%% Calcul des paramètres
angles = [0, 30, 60]; % Vecteur des angles d'incidence
coeff_T = [0.04501 0.02442 0.00252]; % Vecteur des coeff de transmission
% Initialisation des résultats
% parametres = zeros(3, length(angles)); % Une matrice pour stocker les 5 paramètres pour chaque angle
syms lambda sigma V;
parametres = [lambda, sigma, V]; % Une matrice pour stocker les 5 paramètres pour chaque angle
equations = sym(zeros(1, length(angles)));
% Boucle pour calculer les paramètres
for i = 1:length(angles)
theta = angles(i); % Angle d'incidence actuel
T = coeff_T(i); % Coefficient de transmission actuel
E0 = por*sqrt(tor - sind(theta)^2)/(cosd(theta)*tor);
sqrtTerm = sqrt(tor - sind(theta)^2);
logTerm = log(abs(1 + E0)^2) + log(T) - log(4) - log(abs(E0));
% Calcul des paramètres
% Equation 1
equations(i) = xValue*tor/(parametres(1)*sqrtTerm)...
+ y1Value*tor/(parametres(2)*sqrtTerm) + z1Value*tor/(parametres(3)*sqrtTerm)...
+ 1/(parametres(1))^2*( y2Value*tor/(sqrtTerm) + y3Value*tor^2/(sqrtTerm)^3)...
+ 1/(parametres(1)*parametres(2))*( z2Value*tor/(sqrtTerm) + z3Value*tor^2/(sqrtTerm)^3 + z6Value*tor^2/(sqrtTerm)^5)...
+1/(parametres(1)^3)*( z5Value*tor^3/(sqrtTerm)^5 + z4Value*tor^2/(sqrtTerm)^3 + z7Value*tor^2/(sqrtTerm)^5) == logTerm ;
end
eqns_simpl = sym(zeros(1, length(angles)));
for i = 1:length(equations)
eqns_simpl(i) = simplify(equations(i));
end
% Affichage des résultats
disp('Paramètres calculés :');
disp(parametres);
disp('Equations :');
disp(equations)
for i = 1:length(eqns_simpl)
disp(class(eqns_simpl(i))); % Vérifiez si chaque élément est bien un 'sym'
end
assume(lambda > 0 & sigma > 0 & V > 0);
solution = vpasolve(equations, parametres, [1, 1, 1]);
0 comentarios
Respuestas (1)
Torsten
el 11 de Dic. de 2024
Movida: Torsten
el 11 de Dic. de 2024
Maybe your system does not have a solution.
sol = fsolve(@fun,[1 1 0.1]);
fun(sol)
sol = 1./sol
function equations = fun(parametres)
%% Les données (input)
l = 30.6e-3; % Epaisseur
f = 100e3; % Frecq centrale
c0 = 340; % Célérité ds l'air
rho_0 = 1.204; % densité air
eta = 18.5e-6; % Viscosité air
gamma = 1.4; % constante GP
Pr = 0.707; % Nombre de Prandlt
por = 0.95; % Porosité
tor = 1.27; % Tortuosité
%% Coefficients de calcul
xValue = (2*pi*f*l*sqrt(2)/(2*c0))*(sqrt(eta/(rho_0*2*pi*f)))*(1+(gamma-1)/(3*sqrt(Pr)));
y1Value = (l*eta/(rho_0*c0))*((gamma-1)/(3*Pr)+3);
y2Value = (l*eta/(rho_0*c0))*(4*(gamma-1)/(3*sqrt(Pr)));
y3Value = -(l*eta/(2*rho_0*c0))*(1+(gamma-1)/(3*sqrt(Pr)))^2;
z1Value = (2*pi*f*l*sqrt(2)/(2*c0))*((sqrt(eta/(rho_0*2*pi*f)))^3)*(15*(gamma-1)/(4*27*Pr)+(15/4));
z2Value = (2*pi*f*l*sqrt(2)/(2*c0))*((sqrt(eta/(rho_0*2*pi*f)))^3)*(6*(gamma-1)/(9*Pr)+6*(gamma-1)/(3*sqrt(Pr)));
z3Value = - (2*pi*f*l*sqrt(2)/(24*c0))*((sqrt(eta/(rho_0*2*pi*f)))^3)*(1+(gamma-1)/(3*sqrt(Pr)))*((gamma-1)/(3*sqrt(Pr))+3);
z4Value = - (2*pi*f*l*sqrt(2)/(24*c0))*((sqrt(eta/(rho_0*2*pi*f)))^3)*(1+(gamma-1)/(3*sqrt(Pr)))*(4*(gamma-1)/(3*sqrt(Pr)));
z5Value = (2*pi*f*l*sqrt(2)/(8*c0))*((sqrt(eta/(rho_0*2*pi*f)))^3)*(1+(gamma-1)/(3*sqrt(Pr)))^3;
z6Value = - (2*pi*f*l*sqrt(2)/(48*c0))*((sqrt(eta/(rho_0*2*pi*f)))^3)*(1+(gamma-1)/(3*sqrt(Pr)))*((gamma-1)/(3*sqrt(Pr))+3);
z7Value = - (2*pi*f*l*sqrt(2)/(48*c0))*((sqrt(eta/(rho_0*2*pi*f)))^3)*(1+(gamma-1)/(3*sqrt(Pr)))*(4*(gamma-1)/(3*sqrt(Pr)));
%% Calcul des paramètres
angles = [0, 30, 60]; % Vecteur des angles d'incidence
coeff_T = [0.04501 0.02442 0.00252]; % Vecteur des coeff de transmission
% Initialisation des résultats
% parametres = zeros(3, length(angles)); % Une matrice pour stocker les 5 paramètres pour chaque angle
%syms lambda sigma V;
%parametres = [lambda, sigma, V]; % Une matrice pour stocker les 5 paramètres pour chaque angle
equations = zeros(1, length(angles));
% Boucle pour calculer les paramètres
for i = 1:length(angles)
theta = angles(i); % Angle d'incidence actuel
T = coeff_T(i); % Coefficient de transmission actuel
E0 = por*sqrt(tor - sind(theta)^2)/(cosd(theta)*tor);
sqrtTerm = sqrt(tor - sind(theta)^2);
logTerm = log(abs(1 + E0)^2) + log(T) - log(4) - log(abs(E0));
% Calcul des paramètres
% Equation 1
equations(i) = xValue*tor*parametres(1)/sqrtTerm...
+ y1Value*tor*parametres(2)/sqrtTerm + z1Value*tor*parametres(3)/sqrtTerm...
+ parametres(1)^2*( y2Value*tor/(sqrtTerm) + y3Value*tor^2/(sqrtTerm)^3)...
+ parametres(1)*parametres(2)*( z2Value*tor/(sqrtTerm) + z3Value*tor^2/(sqrtTerm)^3 + z6Value*tor^2/(sqrtTerm)^5)...
+parametres(1)^3*( z5Value*tor^3/(sqrtTerm)^5 + z4Value*tor^2/(sqrtTerm)^3 + z7Value*tor^2/(sqrtTerm)^5) - logTerm ;
end
end
2 comentarios
Torsten
el 11 de Dic. de 2024
I rewrote your equations by multiplying instead of dividing by your parameters. Remember to invert the obtained parameters as I did after receiving a solution from "fsolve".
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!