G   = (s + 1)/(s^3 + 6*s^2 + 10*s - 15);
Tcl = simplifyFraction(Tcl)
Tcl = 

[den, term] = coeffs(den, s, 'All')     
den = 
 term = 
 sympref('FloatingPointOutput', true);
eq1  = exp(-zeta*pi / sqrt(1 - zeta^2)) == Mp;  
zeta = double(vpasolve(eq1, zeta, [0 1]));      
Pd  = s^2 + 2*zeta*wn*s + wn^2;
Pr  = (s + e)*(s + e + img*1i)*(s + e - img*1i);
[Pe, term] = coeffs(Pe, s, "All")
term = 
 Eq1 = eq2(1)        
Eq1 = 
 Eq2 = eq2(2)        
Eq2 = 
 Eq3 = eq2(3)        
Eq3 = 
 Eq4 = eq2(4)        
Eq4 = 
 Eq5 = eq2(5)        
Eq5 = 
 Eq6 = eq2(6)        
Eq6 = 
 Eqs = [Eq3, Eq4, Eq5, Eq6];
sol = solve(Eqs, [K1, K2, K3, e], 'Real', true, 'ReturnConditions', true)
sol = 
            K1: 86.5771
            K2: 65.6520
            K3: 20.2595
             e: 1.6131
    parameters: [1x0 sym]
    conditions: symtrue
C   = pid(Kp, Ki, Kd)
C =
 
             1          
  Kp + Ki * --- + Kd * s
             s          
  with Kp = 65.7, Ki = 86.6, Kd = 20.3
 
Continuous-time PID controller in parallel form.
G   = (s + 1)/(s^3 + 6*s^2 + 10*s - 15)
G =
 
           s + 1
  -----------------------
  s^3 + 6 s^2 + 10 s - 15
 
Continuous-time transfer function.
H   = 10/(s + 10)
H =
 
    10
  ------
  s + 10
 
Continuous-time transfer function.
Tcl = feedback(series(C, G), H)
Tcl =
 
    20.26 s^4 + 288.5 s^3 + 1011 s^2 + 1609 s + 865.8
  -----------------------------------------------------
  s^5 + 16 s^4 + 272.6 s^3 + 944.1 s^2 + 1372 s + 865.8
 
Continuous-time transfer function.
    [ncl, dcl] = tfdata(Tcl, 'v');
Gf  = tf(dcl(end), ncl)
Gf =
 
                        865.8
  -------------------------------------------------
  20.26 s^4 + 288.5 s^3 + 1011 s^2 + 1609 s + 865.8
 
Continuous-time transfer function.
Fcl = minreal(series(Gf, Tcl))
Fcl =
 
                          865.8
  -----------------------------------------------------
  s^5 + 16 s^4 + 272.6 s^3 + 944.1 s^2 + 1372 s + 865.8
 
Continuous-time transfer function.
S2  = stepinfo(Fcl)
S2 = 
         RiseTime: 1.8913
    TransientTime: 4.0858
     SettlingTime: 4.0858
      SettlingMin: 0.9077
      SettlingMax: 1.0200
        Overshoot: 2.0000
       Undershoot: 0
             Peak: 1.0200
         PeakTime: 4.0855
step(Tcl, 2*round(S2.SettlingTime))
step(Fcl, 2*round(S2.SettlingTime))
legend('Tcl', 'Fcl', 'location', 'east')