Error using trainNetwork (line 191) TRANSPOSE does not support N-D arrays. Use PAGETRANSPOSE/PAGECTRANSPOSE to transpose pages or PERMUTE to reorder dimensions of N-D arrays
6 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I'm trying to train a NN using 2000 sets of 3 x 128 data but getting error:
Error using trainNetwork (line 191)
TRANSPOSE does not support N-D arrays. Use PAGETRANSPOSE/PAGECTRANSPOSE to transpose pages or PERMUTE to reorder dimensions of N-D arrays.
Caused by:
Error using '
TRANSPOSE does not support N-D arrays. Use PAGETRANSPOSE/PAGECTRANSPOSE to transpose pages or PERMUTE to reorder dimensions of N-D arrays.
%here's my training data:
XTrain_arr=zeros(3,128,2000);
TTrain_arr=zeros(3,128,2000);
for i=1:2000
XTrain_arr(:,:,i)=XTrain{i};
TTrain_arr(:,:,i)=TTrain{i};
end
XTrain_arr=permute(XTrain_arr,[1,2,4,3]);
TTrain_arr=permute(TTrain_arr,[1,2,4,3]);
%defination of the network:
layers2 = [
imageInputLayer([128, 1, 3], Name="input")
convolution2dLayer([1, 4], 3, Padding="same", Stride=[1, 1])
convolution2dLayer([1, 64], 8, Padding="same", Stride=[1, 8])
layerNormalizationLayer()
scalingLayer(Scale=1, Offset=0)
reluLayer
maxPooling2dLayer([1, 2], Padding="same")
convolution2dLayer([1, 32], 8, Padding="same", Stride=[1, 4])
layerNormalizationLayer()
scalingLayer(Scale=1, Offset=0)
reluLayer
maxPooling2dLayer([1, 2], Padding="same")
transposedConv2dLayer([1, 32], 8, Cropping="same", Stride=[1, 4])
reluLayer
transposedConv2dLayer([1, 64], 8, Cropping="same", Stride=[1, 8])
reluLayer
flattenLayer()
lstmLayer(8)
fullyConnectedLayer(8)
dropoutLayer(0.2)
fullyConnectedLayer(4)
dropoutLayer(0.2)
fullyConnectedLayer(3)
regressionLayer]
options = trainingOptions("adam",...
MaxEpochs=600,...
MiniBatchSize=32,...
InitialLearnRate=0.001,...
VerboseFrequency=100,...
Verbose=1, ...
Shuffle="every-epoch",...
Plots="none", ...
DispatchInBackground=true);
deepNetworkDesigner(layers2)
%Train the network
[net1_norm_2,info1_norm_2] = trainNetwork(XTrain_arr,TTrain_arr,layers2,options);
1 comentario
Matt J
el 9 de Jun. de 2025
%here's my training data:
XTrain_arr=zeros(3,128,2000);
TTrain_arr=zeros(3,128,2000);
XTrain_arr=permute(XTrain_arr,[1,2,4,3]);
TTrain_arr=permute(TTrain_arr,[1,2,4,3]);
%defination of the network:
layers2 = [
imageInputLayer([128, 1, 3], Name="input")
convolution2dLayer([1, 4], 3, Padding="same", Stride=[1, 1])
convolution2dLayer([1, 64], 8, Padding="same", Stride=[1, 8])
layerNormalizationLayer()
scalingLayer(Scale=1, Offset=0)
reluLayer
maxPooling2dLayer([1, 2], Padding="same")
convolution2dLayer([1, 32], 8, Padding="same", Stride=[1, 4])
layerNormalizationLayer()
scalingLayer(Scale=1, Offset=0)
reluLayer
maxPooling2dLayer([1, 2], Padding="same")
transposedConv2dLayer([1, 32], 8, Cropping="same", Stride=[1, 4])
reluLayer
transposedConv2dLayer([1, 64], 8, Cropping="same", Stride=[1, 8])
reluLayer
flattenLayer()
lstmLayer(8)
fullyConnectedLayer(8)
dropoutLayer(0.2)
fullyConnectedLayer(4)
dropoutLayer(0.2)
fullyConnectedLayer(3)
regressionLayer]
options = trainingOptions("adam",...
MaxEpochs=2,...
MiniBatchSize=32,...
InitialLearnRate=0.001,...
Shuffle="every-epoch",...
Plots="none");
%Train the network
[net1_norm_2,info1_norm_2] = trainNetwork(XTrain_arr,TTrain_arr,layers2,options)
Respuestas (2)
Hitesh
el 11 de Jun. de 2025
Hi Ruoli,
The error indicates that the input data format 'XTrain_arr' or 'TTrain_arr' is incompatible with the expected format for "trainNetwork"."trainNetwork" expects input data 'XTrain_arr' to be formatted as a 4-D array in this format [height, width, channels, number of observations].
% Create dummy data for demonstration
XTrain = cell(1, 2000);
TTrain = cell(1, 2000);
for i = 1:2000
XTrain{i} = rand(3, 128); % 3 channels × 128 time steps
TTrain{i} = rand(1, 3); % Regression target: 1×3 vector
end
XTrain_arr = zeros(128, 1, 3, 2000); % image format for imageInputLayer
TTrain_arr = zeros(2000, 3); % regression targets
for i = 1:2000
X = XTrain{i}'; % Now X is 128×3
XTrain_arr(:,1,:,i) = X; % Format: H × W × C × N
TTrain_arr(i,:) = TTrain{i}; % Format: N × output_dim
end
% Define the network (assuming you fixed the scalingLayer as discussed earlier)
layers2 = [
imageInputLayer([128, 1, 3], Name="input")
convolution2dLayer([1, 4], 3, Padding="same", Stride=[1, 1])
convolution2dLayer([1, 64], 8, Padding="same", Stride=[1, 8])
layerNormalizationLayer()
scalingLayer(Scale=1)
reluLayer
maxPooling2dLayer([1, 2], Padding="same")
convolution2dLayer([1, 32], 8, Padding="same", Stride=[1, 4])
layerNormalizationLayer()
scalingLayer(Scale=1)
reluLayer
maxPooling2dLayer([1, 2], Padding="same")
transposedConv2dLayer([1, 32], 8, Cropping="same", Stride=[1, 4])
reluLayer
transposedConv2dLayer([1, 64], 8, Cropping="same", Stride=[1, 8])
reluLayer
flattenLayer()
lstmLayer(8)
fullyConnectedLayer(8)
dropoutLayer(0.2)
fullyConnectedLayer(4)
dropoutLayer(0.2)
fullyConnectedLayer(3)
regressionLayer
];
% Training options
options = trainingOptions("adam",...
MaxEpochs=600,...
MiniBatchSize=32,...
InitialLearnRate=0.001,...
VerboseFrequency=100,...
Verbose=1, ...
Shuffle="every-epoch",...
Plots="none", ...
DispatchInBackground=true);
% Train the network
[net1_norm_2, info1_norm_2] = trainNetwork(XTrain_arr, TTrain_arr, layers2, options);
However, "trainNetwork" is not recommended. Use the trainnet function instead as mentioned in MATALB documentation.

0 comentarios
Ver también
Categorías
Más información sobre Build Deep Neural Networks en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!