Does anyone have a MATLAB code example for a staggered grid (for 1D/2D problems)?
62 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I’m working on solving the shallow water equations using a staggered grid in MATLAB, and I’m looking for example codes or guidance for a staggered grid. Specifically, I want to understand how to set up the grid (interfaces and centers), apply boundary/initial conditions. These are my equations,


2 comentarios
Torsten
el 26 de Sept. de 2025 a las 20:26
Editada: Torsten
el 26 de Sept. de 2025 a las 20:27
I know the use of staggered grids to compute velocity and pressure for the Navier-Stokes equations.
Why do you think this is necessary for the shallow water equations ?
I suggest working with CLAWPACK because the equations are quite difficult to handle numerically:
Respuestas (1)
William Rose
el 28 de Sept. de 2025 a las 1:23
Here is a start, just to show how the grids set up in 2D:
dx=0.1; Lx=1;
dy=0.1; Ly=1;
[PX,PY]=meshgrid(0:dx:Lx,0:dy:Ly);
[UX,UY]=meshgrid(dx/2:dx:Lx-dx/2,0:dy:Ly);
[VX,VY]=meshgrid(0:dx:Lx,dy/2:dy:Ly-dy/2);
Display the grids
figure;
plot(PX(:),PY(:),'r.',UX(:),UY(:),'g.',VX(:),VY(:),'b.')
legend('Pressure','U','V'); xlabel('X'); ylabel('Y'); title('Staggered Grids')
For 3D, add a grid for W (z-component of velocity) which is offset by dz/2.
Depending on your boundary conditions, you might want the U and V grid opoints to lie exactly on both boundaries. For example, in a tank, U and V are zero at the edges, so place the U and V grid points on the tank edges, where the respective velocities must be zero. The boundary conditions will include: {U=0 at X=0 and at X=Lx}; {V=0 at Y=0 and at Y=Ly}. One way to make such a grid is shown below.
[UX,UY]=meshgrid(0:dx:Lx,dy/2:dy:Ly-dy/2);
[VX,VY]=meshgrid(dx/2:dx:Lx-dx/2,0:dy:Ly);
[PX,PY]=meshgrid(dx/2:dx:Lx-dx/2,dy/2:dy:Ly-dy/2);
Display the grids
figure;
plot(PX(:),PY(:),'r.',UX(:),UY(:),'g.',VX(:),VY(:),'b.')
legend('Pressure','U','V'); xlabel('X'); ylabel('Y'); title('Staggered Grids')
For the specific equations on the staggered grids, consult the journal articles to which you referred.
11 comentarios
William Rose
el 1 de Oct. de 2025 a las 5:28
I am attaching a script that is based on yours, but with significant modifications to how Q and eta are updated on each pass. I have attempted to implement the equations you provided. It produces plots that look plausible. See comments in the code for details.
My initial condition is not quite like yours. My inital condition is that there is a rectangular pulse of high water that extends for the first 5 spatial grid points, at t=0.
I mostly used your constants, but I used smaller values than you for dx and for dt. I integrate to t=2000 s.
The script displays Q(x) and eta(x) at every time point, like a video. It takes about 90-100 seconds to display all 2000 frames, on my machine.
The update to Q at each time requires η. Since the Q and eta grids ar offset, I compute eta (for udating Q) at the Q grid points, by interpolation. This probably cancels out any advantage of using staggered grids.
The update to Q also requires dQ/dx. I compute dQ/dx by centered differences, to get a good estimate at each Q grid point.
If you set Cd=0.0 instead of Cd=0.0022, you will see undamped wave propagation.
Ver también
Categorías
Más información sobre Eigenvalue Problems en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!