Creating a polynomial fit expression using just the order number

55 visualizaciones (últimos 30 días)
Jason
Jason el 18 de Nov. de 2025 a las 21:26
Editada: dpb el 20 de Nov. de 2025 a las 16:37

Hello. Im performing a fit to data using e.g a 3rd order polynomial and the expresion below. For cases when i want e.g a 4th or 5th order fit, rather than use a switch / case approach is there a way to construct the expression below simply by passing in n the polynomial order?

a123 = [x.^3, x.^2, x]\y;

Respuesta aceptada

dpb
dpb el 18 de Nov. de 2025 a las 21:38
Editada: dpb el 18 de Nov. de 2025 a las 21:57
c=x.^[n:-1:1]\y;
I presume leaving off the intercept is intentional? Otherwise, there's polyfit
  5 comentarios
dpb
dpb el 19 de Nov. de 2025 a las 21:22
With a 7th order polynomial, are you forcing it through a set of points, maybe? Would a spline be an alternative?
Torsten
Torsten el 19 de Nov. de 2025 a las 23:53
Editada: dpb el 20 de Nov. de 2025 a las 16:37
xtr=x-x0;
% acoeffs=[xtr.^5,xtr.^4,xtr.^3,xtr.^2,xtr]\(y-y0) %acoeffs=[xtr.^7,xtr.^6,xtr.^5,xtr.^4,xtr.^3,xtr.^2,xtr]\(y-y0)
acoeffs=[xtr.^7,xtr.^6,xtr.^5,xtr.^4,xtr.^3,xtr.^2,xtr]\(y-y0);
will give you a polynomial that passes through (x0,y0), but will have a constant term - thus will no longer be of the form you used earlier.
Thus the property of passing through (x0,y0) is payed by losing the property of passing through (0,0).

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Interpolation en Help Center y File Exchange.

Etiquetas

Productos


Versión

R2024b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by