Creating a polynomial fit expression using just the order number
55 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Jason
el 18 de Nov. de 2025 a las 21:26
Hello. Im performing a fit to data using e.g a 3rd order polynomial and the expresion below. For cases when i want e.g a 4th or 5th order fit, rather than use a switch / case approach is there a way to construct the expression below simply by passing in n the polynomial order?
a123 = [x.^3, x.^2, x]\y;
0 comentarios
Respuesta aceptada
dpb
el 18 de Nov. de 2025 a las 21:38
Editada: dpb
el 18 de Nov. de 2025 a las 21:57
c=x.^[n:-1:1]\y;
I presume leaving off the intercept is intentional? Otherwise, there's polyfit
5 comentarios
dpb
el 19 de Nov. de 2025 a las 21:22
With a 7th order polynomial, are you forcing it through a set of points, maybe? Would a spline be an alternative?
Torsten
el 19 de Nov. de 2025 a las 23:53
Editada: dpb
el 20 de Nov. de 2025 a las 16:37
xtr=x-x0;
% acoeffs=[xtr.^5,xtr.^4,xtr.^3,xtr.^2,xtr]\(y-y0) %acoeffs=[xtr.^7,xtr.^6,xtr.^5,xtr.^4,xtr.^3,xtr.^2,xtr]\(y-y0)
acoeffs=[xtr.^7,xtr.^6,xtr.^5,xtr.^4,xtr.^3,xtr.^2,xtr]\(y-y0);
will give you a polynomial that passes through (x0,y0), but will have a constant term - thus will no longer be of the form you used earlier.
Thus the property of passing through (x0,y0) is payed by losing the property of passing through (0,0).
Más respuestas (0)
Ver también
Categorías
Más información sobre Interpolation en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!