numerical Instabilities for bessel functions

292 visualizaciones (últimos 30 días)
Javeria
Javeria el 8 de Dic. de 2025 a las 3:05
Editada: Torsten hace alrededor de 8 horas
I write the following code but i used the following parametrs and i did not get any numerical instabilities:
RI = 34.5; % Inner radius (m)
ratio = 47.5/34.5; % Ratio R_E / R_I
RE = ratio*RI; % outer radius (m)
h = 200/34.5 * RI; % Water depth (m)
d = 38/34.5 * RI; % Interface depth (m)
b = h-d;
But when i switch the parameters with this then i get numerical instabilities
RI = 0.4; % Inner radius (m)
RE = 0.8; % Outer radius (m)
d = 0.3; % Draft (m)
h = 1.0; % Water depth (m)
b = h-d; %from cylinder bottom to seabed (m)
the following is code
clear all;
close all;
clc;
tic;
% diary('iter_log.txt');
% diary on
% fprintf('Run started: %s\n', datestr(now));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Parameters from your setup
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
N = 10; % Number of N modes
M = 10; % Number of M modes
Q = 10; % Number of Q modes
RI = 0.4; % Inner radius (m)
RE = 0.8; % Outer radius (m)
d = 0.3; % Draft (m)
h = 1.0; % Water depth (m) % Interface depth (m)
b = h-d; % Distance from cylinder bottom to seabed (m)
g = 9.81; % Gravity (m/s^2)
tau =0.2; % porosity ratio
gamma = 1.0; % discharge coefficient
b1 = (1 - tau) / (2 * gamma * tau^2); % nonlinear coeff
tol = 1e-4; % convergence tolerance
max_iter = 100; % max iterations
l = 0; % Azimuthal order
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% === Compute Bessel roots and scaled chi values ===
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
roots = bessel0j(l, Q); % Zeros of J_l(x)
chi = roots ./ RI; % chi_q^l = roots scaled by radius
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ===== Define Range for k_0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% X_kRE = linspace(0.0025, 0.16,100); %%%%%% this is now k_0
X_kRE = linspace(0.05, 4.5, 40);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ==============Initialize eta0 array before loop
%===============Initialize omega array before loop
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
eta0 = zeros(size(X_kRE)); % Preallocate
omega = zeros(size(X_kRE)); %%%% omega preallocate
% iters_used = zeros(length(X_kRE),1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for idx = 1:length(X_kRE)
wk = X_kRE(idx); % dimensional wavenumber
omega(idx) = sqrt(g * wk * tanh(wk * h)); % dispersion relation
% fprintf('\n--- idx %3d (T=%6.3f s) ---\n', idx, 2*pi/omega(idx));
% drawnow;
%%%%%%%%%%%%% Compute group velocity %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Cg(idx) = (g * tanh(wk * h) + g * wk * h * (sech(wk * h))^2) ...
* omega(idx) / (2 * g * wk * tanh(wk * h));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% =======Compute a1 based on tau
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a1(idx) = 0.93 * (1 - tau) * Cg(idx);
% dissip(idx) = a1(idx)/omega(idx);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%=============== Find derivative of Z0 at z = -d
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Z0d = (cosh(wk * h) * wk * sinh(wk * b)) / (2 * wk * h + sinh(2 * wk * h));
fun_alpha = @(x) omega(idx)^2 + g*x.*tan(x*h); %dispersion equation for evanescent modes
opts_lsq = optimoptions('lsqnonlin','Display','off'); % ← add this
for n = 1:N
if n == 1
k(n) = -1i * wk;
else
x0_left = (2*n - 3) * pi / (2*h);
x0_right = (2*n - 1) * pi / (2*h);
guess = (x0_left + x0_right)/2;
% Use lsqnonlin for better convergence
k(n) = lsqnonlin(fun_alpha, guess, x0_left, x0_right,opts_lsq);
%%%%%%%%%%%%% Derivative of Z_n at z = -d %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Znd(n) = -k(n) * (cos(k(n)*h) * sin(k(n)*b)) / (2*k(n)*h + sin(2*k(n)*h));
end
end
%% finding the root \lemda_m =m*pi/b%%%%%%
for j=1:M
m(j)=(pi*(j-1))/b;
end
% %%%%%%%%%%%%%%%%%%%%% Define matrix A %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
A = zeros(M,N);
A(1,1) = (cosh(wk*h)*sinh(wk*b))/(wk*b*(2*wk*h+sinh(2*wk*h)))*(besselh(l, wk*RE)) /(dbesselh(l, wk*RE)); % Set A_00
for j = 2:N
A(1,j) =(cos(k(j)*h)*sin(k(j)*b) )/ (k(j)*b*(2*k(j)*h + sin(2*k(j)*h)))*( besselk(l, k(j)*RE) )...
/(dbesselk(l, k(j)*RE)); % Set A_0n
end
for i = 2:M
A(i,1) =(2 * cosh(wk*h) * (-1)^(i-1) * wk*sinh(wk*b)) / (b * (2*wk*h + sinh(2*wk*h))*(wk^2 + m(i)^2))...
* (besselh(l, wk*RE))/ (dbesselh(l, wk*RE)); % Set A_m0
end
for i = 2:M
for j = 2:N
A(i,j) = (2*cos(k(j)*h)*(-1)^(i-1) *k(j)* sin(k(j)*b))/ (b * (2*k(j)*h + sin(2*k(j)*h))*(k(j)^2-m(i)^2))...
*(besselk(l, k(j)*RE)) / (dbesselk(l, k(j)*RE));% Set A_mn
end
end
%%%%%%%%%%%%%%%%%%%%%%%% DefineMatrix B %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
B=zeros(N,M);
B(1,1) = (4*sinh(wk*b)) / (RE * wk*log(RE/RI) *cosh(wk*h)); %set B_00
%%%%%%%%%%%B_0m%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for j = 2:M
Rml_prime_RE = m(j)*(besselk(l, m(j)*RI) * dbesseli(l, m(j)*RE) ...
- besseli(l, m(j)*RI) * dbesselk(l, m(j)*RE))...
/(besselk(l, m(j)*RI) * besseli(l, m(j)*RE) - besselk(l, m(j)*RE) * besseli(l, m(j)*RI));
B(1,j) = Rml_prime_RE * (4 * wk * (-1)^(j-1) * sinh(wk*b)) / (cosh(wk*h) * (wk^2 + m(j)^2));
end
%%%%%%%%%%%B_n0%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=2:N
B(i,1)=(4*sin(k(i)*b))/(RE*k(i)*log(RE/RI)*cos(k(i)*h));% Set B_n0
end
%%%%%%%%%%%%%%%%%%%%%%%%%%B_nm%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=2:N
for j=2:M
Rml_prime_RE = m(j)*(besselk(l, m(j)*RI) * dbesseli(l, m(j)*RE) ...
- besseli(l, m(j)*RI) * dbesselk(l, m(j)*RE))...
/(besselk(l, m(j)*RI) * besseli(l, m(j)*RE) - besselk(l, m(j)*RE) * besseli(l, m(j)*RI));
B(i,j) = Rml_prime_RE * (4 * k(i) * (-1)^(j-1) * sin(k(i)*b)) / (cos(k(i)*h) * (k(i)^2 - m(j)^2));
end
end
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Define Matrix C %%%%%%%%%%%%%%%%%%%%%%%%
C = zeros(N,M);
C(1,1) = -4 * sinh(wk*b) / (RE * wk*log(RE/RI) * cosh(wk*h));
% %%%%% DEfine C0m%%%%%%
for j = 2:M
Rml_prime_star_RE = m(j)*(besseli(l, m(j)*RE) * dbesselk(l, m(j)*RE) ...
- besselk(l, m(j)*RE) * dbesseli(l, m(j)*RE))...
/(besselk(l, m(j)*RI) * besseli(l, m(j)*RE) - besselk(l, m(j)*RE) * besseli(l, m(j)*RI));
C(1,j) = Rml_prime_star_RE * (4 * wk * (-1)^(j-1) * sinh(wk*b)) / (cosh(wk*h) * (wk^2 + m(j)^2));
end
% %%%%%%% Define Cn0%%%%%%
for i = 2:N
C(i,1) = -4 * sin(k(i)*b) / (RE *k(i)* log(RE/RI) * cos(k(i)*h));
end
% % %%%%%% Define Cnm%%%%%%
for i = 2:N
for j =2:M
Rml_prime_star_RE = m(j)*(besseli(l, m(j)*RE) * dbesselk(l, m(j)*RE) ...
- besselk(l, m(j)*RE) * dbesseli(l, m(j)*RE))...
/(besselk(l, m(j)*RI) * besseli(l, m(j)*RE) - besselk(l, m(j)*RE) * besseli(l, m(j)*RI));
C(i,j) = Rml_prime_star_RE * (4 * k(i) * (-1)^(j-1) * sin(k(i)*b)) / (cos(k(i)*h) * (k(i)^2 - m(j)^2));
end
end
%%%%%%% write Matrix D %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
D = zeros(M,N);
%%% write D00 %%%%%%
D(1,1) = (cosh(wk*h) * sinh(wk*b)) / (wk*b * (2*wk*h + sinh(2*wk*h))) * (besselj(l, wk*RI))/ (dbesselj(l, wk*RI));
%%%%% write D0n %%%%%%%%%%
for j =2:N
D(1,j) = (cos(k(j)*h) * sin(k(j)*b)) / (k(j)*b * (2*k(j)*h + sin(2*k(j)*h))) * (besseli(l, k(j)*RI) )/ (dbesseli(l, k(j)*RI));
end
%%%%%% write Dm0 %%%%%%%%%
for i = 2:M
D(i,1) = (2 * cosh(wk*h) * (-1)^(i-1) * wk * sinh(wk*b)) /(b * (2*wk*h + sinh(2*wk*h)) * (wk^2 + m(i)^2))...
*(besselj(l, wk*RI) )/(dbesselj(l, wk*RI));
end
%%%%% Define Dmn%%%%%%%%
for i = 2:M
for j = 2:N
D(i,j) = (2 * cos(k(j)*h) * (-1)^(i-1) * k(j) * sin(k(j)*b)) /(b * (2*k(j)*h + sin(2*k(j)*h)) * (k(j)^2 - m(i)^2))...
*(besseli(l, k(j)*RI)) / (dbesseli(l, k(j)*RI));
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%% Define Matrix E %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
E = zeros(N, M); % Preallocate the matrix E
%%%%% Define E00%%%%%%%%%%%%
E(1,1) = (4 * sinh(wk*b)) / (RI *wk* log(RE/RI) * cosh(wk*h));
%%%% Define Eom %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for j = 2:M
Rml_prime_RI = m(j)*(besselk(l, m(j)*RI) * dbesseli(l, m(j)*RI) ...
- besseli(l, m(j)*RI) * dbesselk(l, m(j)*RI))...
/ (besselk(l, m(j)*RI) * besseli(l, m(j)*RE) - besselk(l, m(j)*RE) * besseli(l, m(j)*RI));
E(1,j) = Rml_prime_RI * (4 * wk * (-1)^(j-1) * sinh(wk*b)) / (cosh(wk*h) * (wk^2 + m(j)^2));
%
end
%%%%%% Define Eno%%%%%%%%%%%%%%
for i = 2:N
E(i,1) = (4 * sin(k(i)*b)) / (RI *k(i)* log(RE/RI) * cos(k(i)*h));
end
for i = 2:N
for j = 2:M
Rml_prime_RI = m(j)*(besselk(l, m(j)*RI) * dbesseli(l, m(j)*RI) ...
- besseli(l, m(j)*RI) * dbesselk(l, m(j)*RI))...
/ (besselk(l, m(j)*RI) * besseli(l, m(j)*RE) - besselk(l, m(j)*RE) * besseli(l, m(j)*RI));
E(i,j) = Rml_prime_RI * (4 * k(i) * (-1)^(j-1) * sin(k(i)*b)) / (cos(k(i)*h) * (k(i)^2 - m(j)^2));
end
end
%%%%%%%%%%%%%%%%%%%%%%%% Now write matrix F %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
F = zeros(N,M);
%%%%%%%% Define F00 %%%%%%%%%%
F(1,1) = (-4 * sinh(wk*b)) / (RI * wk*log(RE/RI) * cosh(wk*h));
% %%%%%% Define F0m%%%%
for j = 2:M
Rml_star_prime_RI = m(j)*(besseli(l, m(j)*RE) * dbesselk(l, m(j)*RI) ...
- besselk(l, m(j)*RE) * dbesseli(l, m(j)*RI))/((besselk(l, m(j)*RI) ...
* besseli(l, m(j)*RE) - besselk(l, m(j)*RE) * besseli(l, m(j)*RI)));
F(1,j) = Rml_star_prime_RI * (4 * wk * (-1)^(j-1) * sinh(wk*b)) / (cosh(wk*h) * (wk^2 + m(j)^2));
end
%%%%% Defin Fn0%%%%%%
for i = 2:N
F(i,1) = (-4 * sin(k(i)*b)) / (RI *k(i)* log(RE/RI) * cos(k(i)*h));
end
%%%%%%% Define Fnm %%%%%%%
for i = 2:N
for j = 2:M
Rml_star_prime_RI = m(j)*(besseli(l, m(j)*RE) * dbesselk(l, m(j)*RI) ...
- besselk(l, m(j)*RE) * dbesseli(l, m(j)*RI))/((besselk(l, m(j)*RI) ...
* besseli(l, m(j)*RE) - besselk(l, m(j)*RE) * besseli(l, m(j)*RI)));
F(i,j) = Rml_star_prime_RI * (4 * k(i)* (-1)^(j-1) * sin(k(i)*b)) / (cos(k(i)*h) * (k(i)^2 - m(j)^2));
end
end
% % %%%%%%%%%% Write Matrix W %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
W = zeros(N,Q);
% %%W_{0q}
for q = 1:Q
r = exp(-2*chi(q)*b); % e^{-2*chi*b}
coth_chib = (1 + r) / (1 - r); % coth(chi*b) via decaying exp
W(1,q) = -(4*chi(q)/cosh(wk*h))*(( wk*sinh(wk*b)*coth_chib - chi(q)*cosh(wk*b) ) / ( wk^2 - chi(q)^2 ) ); %prof.chen
%
% % W(1, q) = - (4 * chi(q) / cosh(wk * h)) * (chi(q) * sinh(chi(q) * b) * cosh(wk * b) - wk * sinh(wk * b) * cosh(chi(q) * b)) ...
% % / ((chi(q)^2 - wk^2) * sinh(chi(q) * b));
end
% % %%% Write W_{nq}
for n = 2:N
for q = 1:Q
r = exp(-2*chi(q)*b); % e^{-2*chi*b}
coth_chib = (1 + r) / (1 - r); % coth(chi*b), stable
W(n,q) = -(4*chi(q)/cos(k(n)*h)) * ...
( ( k(n)*sin(k(n)*b)*coth_chib + chi(q)*cos(k(n)*b) ) ... %prof.chen
/ ( k(n)^2 + chi(q)^2 ) );
% % W(n, q) = - (4 * chi(q) / cos(k(n) * h)) * (chi(q) * sinh(chi(q) * b) * cos(k(n) * b) + k(n) * sin(k(n) * b) * cosh(chi(q) * b)) ...
% % / ((chi(q)^2 + k(n)^2) * sinh(chi(q) * b));
end
end
%%%%%%%%%%%%%%%%%%%%%%%Find E1_{q}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
f2 = omega(idx)^2 / g;
E1 = zeros(Q,1);
S_q = zeros(Q,1);
for q = 1:Q
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% this expression is same as prof. Chen code
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
exp2chi_d = exp(-2 * chi(q) * d); % e^{-2*chi*d}
exp2chi_b = exp(-2 * chi(q) * b); % e^{-2*chi*(h-d)}
exp2chi_h = exp(-2 * chi(q) * h); % e^{-2*chi*h}
exp1chi_d = exp(-chi(q) * d); % e^{-chi*d}
% intermediate ratio (same order as Fortran)
BB = (f2 - chi(q)) * (exp2chi_b / exp2chi_d);
BB = BB + (f2 + chi(q)) * (1 + 2 * exp2chi_b);
BB = BB / (f2 - chi(q) + (f2 + chi(q)) * exp2chi_d);
BB = BB / (1 + exp2chi_b);
% final coefficient
E1(q) = 2 * (BB * exp2chi_d - 1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% This expression is that one derived directly
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% % N0, D0, H0 exactly as in the math above
% N0 = (chi(q) - f2) + (chi(q) + f2) * exp2chi_h;
% D0 = (f2 - chi(q)) + (f2 + chi(q)) * exp2chi_d;
% H0 = 1 + exp2chi_b;
%
% % final coefficient (no add/subtract step)
% E1(q) = 2 * N0 / (D0 * H0);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% This one is the hyperbolic one form
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% num = chi(q)*cosh(chi(q)*h) - f2*sinh(chi(q)*h);
% den = (f2*cosh(chi(q)*d) - chi(q)*sinh(chi(q)*d)) * cosh(chi(q)*(h - d)); % or: * cosh(chi(q)*b)
% E1(q) = num / den;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% This is the upper region velocity potential at z=0, write
%%%%%%%%%%%%%%%% from prof.chen code
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CCmc = 1 + (exp2chi_b / exp2chi_d) + 2*exp2chi_b;
CCmc = CCmc / (1 + exp2chi_b);
CCmc = BB * (1 + exp2chi_d) - CCmc;
S_q(q) = CCmc * exp1chi_d; % this equals the summand value for this q
% --- direct hyperbolic (exact) ---
% % % C_hyp = ( chi(q)*cosh(chi(q)*h) - f2*sinh(chi(q)*h) ) ...
% % % / ( (f2*cosh(chi(q)*d) - chi(q)*sinh(chi(q)*d)) * cosh(chi(q)*b) );
% % %
% % % S_hyp(q) = C_hyp * cosh(chi(q)*d) + sinh(chi(q)*h) / cosh(chi(q)*b); % summand
end
% H(q): diagonal term (exponential form)
H1 = zeros(Q,1);
for q = 1:Q
% dissip =
r = exp(-2*chi(q)*b); % e^{-2*chi*b}
mid = 4*r/(1 - r^2) - E1(q); % 2/sinh(2*chi*b) - C_m
H1(q) = mid + 1i*a1(idx)*chi(q)/omega(idx); % mid + i*(a1/w)*chi
end
H = diag(H1);
%%%%%%%%%%matric G%%%%%%%%%%%%%%%%%%
G = zeros(Q, N); % Preallocate
for q = 1:Q
G(q,1) = 1i * 2*(a1(idx)/(omega(idx)*RI))* Z0d ...
* ( chi(q) / (chi(q)^2 - wk^2) )* ( besselj(l, wk*RI) / dbesselj(l, wk*RI) ); % this one is my calculated
end
% %G_qn
for q = 1:Q
for n = 2:N
G(q, n) = 1i * 2*(a1(idx)/(omega(idx)*RI))* Znd(n) ...
* ( chi(q) / (k(n)^2 + chi(q)^2) )* ( besseli(l, k(n)*RI) / dbesseli(l, k(n)*RI) ); % this one is my calculated
end
end
% % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %Define the right hand side vector
U = zeros(2*M + 2*N + Q, 1); % Full vector, M+N+M+N+Q elements
% % Block 1: U (size M = 4)
for i = 1:M
if i == 1
U(i, 1) = (sinh(wk*b))/((b*wk)*cosh(wk*h))*besselj(l, wk*RE) ; % Z_0^l
else
U(i, 1) = (2 *wk*(-1)^(i-1)*sinh(wk*b))/(b *(wk^2 +m(i)^2)*cosh(wk*h))*besselj(l, wk*RE); %Z_m^l
end
end
% % Block 2: Y (size N = 3)
for j = 1:N
if j == 1
U(j + M, 1) = -dbesselj(l, wk*RE) * (2*wk*h + sinh(2*wk*h)) /(cosh(wk*h)^2); % Y_0^l
else
U(j + M, 1) = 0; % Y_n^l
end
end
% % Block 3: X (size M = 4)
for i = 1:M
U(i + M + N, 1) = 0; % X_0^l, X_m^l
end
% Block 4: W (size N = 3)
for j = 1:N
U(j + M + N + M, 1) = 0; % W_0^l, W_n^l
end
% % Identity matrices
I_M = eye(M);
I_N = eye(N);
% Zero matrices
ZMM = zeros(M, M);
ZMN = zeros(M, N);
ZNM = zeros(N, M);
ZNN = zeros(N, N);
ZMQ = zeros(M,Q);
ZNQ = zeros(N,Q);
ZQM = zeros(Q,M);
ZQN = zeros(Q,N);
% Construct the full block matrix S
S = [ I_M, -A, ZMM, ZMN, ZMQ;
-B, I_N, -C, ZNN, ZNQ;
ZMM, ZMN, I_M, -D, ZMQ;
-E, ZNN, -F, I_N, -W;
ZQM, ZQN, ZQM, -G, H ];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
converged = false;
psi = zeros(Q,1);
T_old = []; % <-- track the full solution from prev. iter
% T_old = zeros(2*M + 2*N + Q, 1); % previous unknowns (seed)
for iter = 1:max_iter
% (A) overwrite ONLY Block 5 of U from current psi
for q = 1:Q
U(2*M + 2*N + q) = -(1i*b1/omega(idx)) * (2/(RI^2 * dbesselj(l, chi(q)*RI))) * psi(q);
end
T = S \ U; % Solve the linear system
% T = pinv(S) * U; % Use pseudoinverse for stability
b_vec = T(1:M); % Coefficients b^l
a_vec = T(M+1 : M+N); % Coefficients a^l
c_vec = T(M+N+1 : 2*M+N); % Coefficients c^l
d_vec = T(2*M+N+1:2*M+2*N); % Coefficients d^l
e_vec = T(2*M+2*N+1:end); % (Q×1)
% (D) update psi for NEXT iteration from CURRENT coefficients
for q = 1:Q
integrand = @(r) abs(v_D(N,Q,r,Z0d,wk,RI,l,d_vec,Znd,k,e_vec,chi)) ...
.* v_D(N,Q,r,Z0d,wk,RI,l,d_vec,Znd,k,e_vec,chi) ...
.* besselj(l, chi(q)*r) .* r;
psi(q) = integral(integrand, 0, RI, 'AbsTol',1e-8, 'RelTol',1e-6);
end
% % % drawnow; % optional: flush output each iter
% === compact per-iteration print, only for T in [5,35] ===
% Tcur = 2*pi/omega(idx);
% if Tcur >= 5 && Tcur <= 35
% fprintf('idx %3d | iter %2d | ||psi|| = %.3e\n', idx, iter, norm(psi));
% drawnow;
% end
% % % % (E) convergence on ALL unknowns (T vs previous T)
% --- per-iteration diagnostics (optional) ---
if ~isempty(T_old)
diff_T = max(abs(T - T_old));
% Tcur = 2*pi/omega(idx);
% if Tcur >= 5 && Tcur <= 35
% fprintf('k0 idx %3d | iter %2d: max|ΔT| = %.3e, ||psi|| = %.3e\n', ...
% idx, iter, diff_T, norm(psi));
% drawnow; % ← add this to flush each iteration line too
% end
if diff_T < tol
converged = true;
break
end
end
T_old = T;
end % <<< end of iter loop
% % ---- ONE summary line per frequency (place it here) ----
% iters_used(idx) = iter; % how many iterations this frequency needed
% fprintf('idx %3d (T=%6.3f s): iters=%2d\n', idx, 2*pi/omega(idx), iter);
% drawnow;
% -------------- end nonlinear iteration --------------
% % %%%%%%%%% Wave motion%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
term1 = (d_vec(1)*cosh(wk*h)^2) / ((2*wk*h + sinh(2*wk*h)) * dbesselj(l, wk*RI));
sum1 = 0;
for n =2:N
sum1 = sum1 + d_vec(n)*cos(k(n)*h)^2/ ((2*k(n)*h + sin(2*k(n)*h))* dbesseli(l, k(n)*RI));
end
phiUell = 0;
for q =1:Q
phiUell = phiUell +e_vec(q)* S_q(q);
end
eta0(idx) = abs(term1+sum1+phiUell);
end
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % % Plotting Data
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% figure(2); clf;
% >>> CHANGES START (3): one figure = two taus + Dr. Chen only
% plot(2*pi./omega, eta0, 'k', 'LineWidth', 1.5); %%% this is T which is T= 2*pi/omega plotting against T
plot(omega.^2 * RE / g, eta0, 'k', 'LineWidth', 1.5); %%% this is T which is T= 2*pi/omega plotting against T
hold on; % Add extra plots on same figure
% % % %
% % % % % Now plot the 3 CSV experimental points
% scatter(data_chen(:,1), data_chen(:,2), 30, 'r', 'o', 'filled');
% % scatter(data_liu(:,1), data_liu(:,2), 30, 'g', 's', 'filled');
% scatter(data_exp(:,1), data_exp(:,2), 30, 'b', '^', 'filled');
xlabel('$T$', 'Interpreter', 'latex');
ylabel('$|\eta / (iA)|$', 'Interpreter', 'latex');
title('Wave motion amplitude for $R_E = 138$', 'Interpreter', 'latex');
legend({'$\tau=0.2$','Model test'}, ...
'Interpreter','latex','Location','northwest');
grid on;
% xlim([5 35]); % Match the reference plot
% ylim([0 4.5]); % Optional: based on expected peak height
xlim([0 4]); % Match the reference plot
ylim([0 7]); % Optional: based on expected peak height
% === plotting section ===
% diary off
elapsedTime = toc;
disp(['Time consuming = ', num2str(elapsedTime), ' s']);
function out = dbesselk(l, z)
%DBESSELK Derivative of the modified Bessel function of the second kind
% out = dbesselk(l, z)
% Returns d/dz [K_l(z)] using the recurrence formula:
% K_l'(z) = -0.5 * (K_{l-1}(z) + K_{l+1}(z))
out = -0.5 * (besselk(l-1, z) + besselk(l+1, z));
end
function out = dbesselj(l, z)
%DBESSELJ Derivative of the Bessel function of the first kind
% out = dbesselj(l, z)
% Returns d/dz [J_l(z)] using the recurrence formula:
% J_l'(z) = 0.5 * (J_{l-1}(z) - J_{l+1}(z))
out = 0.5 * (besselj(l-1, z) - besselj(l+1, z));
end
function out = dbesseli(l, z)
%DBESSELI Derivative of the modified Bessel function of the first kind
% out = dbesseli(l, z)
% Returns d/dz [I_l(z)] using the recurrence formula:
% I_l'(z) = 0.5 * (I_{l-1}(z) + I_{l+1}(z))
out = 0.5 * (besseli(l-1, z) + besseli(l+1, z));
end
function out = dbesselh(l, z)
%DBESSELH Derivative of the Hankel function of the first kind
% out = dbesselh(l, z)
% Returns d/dz [H_l^{(1)}(z)] using the recurrence formula:
% H_l^{(1)'}(z) = 0.5 * (H_{l-1}^{(1)}(z) - H_{l+1}^{(1)}(z))
out = 0.5 * (besselh(l-1, 1, z) - besselh(l+1, 1, z));
end
function x = bessel0j(l,q,opt)
% a row vector of the first q roots of bessel function Jl(x), integer order.
% if opt = 'd', row vector of the first q roots of dJl(x)/dx, integer order.
% if opt is not provided, the default is zeros of Jl(x).
% all roots are positive, except when l=0,
% x=0 is included as a root of dJ0(x)/dx (standard convention).
%
% starting point for for zeros of Jl was borrowed from Cleve Moler,
% but the starting points for both Jl and Jl' can be found in
% Abramowitz and Stegun 9.5.12, 9.5.13.
%
% David Goodmanson
%
% x = bessel0j(l,q,opt)
k = 1:q;
if nargin==3 && opt=='d'
beta = (k + l/2 - 3/4)*pi;
mu = 4*l^2;
x = beta - (mu+3)./(8*beta) - 4*(7*mu^2+82*mu-9)./(3*(8*beta).^3);
for j=1:8
xnew = x - besseljd(l,x)./ ...
(besselj(l,x).*((l^2./x.^2)-1) -besseljd(l,x)./x);
x = xnew;
end
if l==0
x(1) = 0; % correct a small numerical difference from 0
end
else
beta = (k + l/2 - 1/4)*pi;
mu = 4*l^2;
x = beta - (mu-1)./(8*beta) - 4*(mu-1)*(7*mu-31)./(3*(8*beta).^3);
for j=1:8
xnew = x - besselj(l,x)./besseljd(l,x);
x = xnew;
end
end
end
% --- Local helper function for derivative of Bessel function ---
function dJ = besseljd(l, x)
dJ = 0.5 * (besselj(l - 1, x) - besselj(l + 1, x));
end
function v_D_val = v_D(N, Q, r, Z0d, wk, RI, l, d_vec, Znd, k, e_vec, chi)
% n = 0 mode
term1 = (d_vec(1) * Z0d * besselj(l, wk*r)) / (dbesselj(l, wk*RI));
% n >= 2 evanescent sum
sum1 = 0;
for nidx = 2:N
sum1 = sum1 + d_vec(nidx) * Znd(nidx) * besseli(l, k(nidx)*r) ...
/( dbesseli(l, k(nidx)*RI));
end
% q = 1..Q radial sum
sum2 = 0;
for qidx = 1:Q
sum2 = sum2 + e_vec(qidx) *chi(qidx)* besselj(l, chi(qidx)*r) / dbesselj(l, chi(qidx)*RI);
end
v_D_val = term1 + sum1 + sum2;
end
  10 comentarios
Javeria
Javeria el 8 de Dic. de 2025 a las 13:05
@Walter Roberson@Sam Chak what i have that we need to treat this non linear term iteratively to solve our system of equation;
The principle of iteration is the same. You may go in another way: 1) assuming your coefficient b1=0, you should have everything including v_D(r);
2) using a new a’( r)=a+b|v_D( r)| in place of a to solve all equations to get a new v_D( r); 3) to check the new v_D with previous one, if the difference is larger than your tolerance, continue the step 2).
David Goodmanson
David Goodmanson el 23 de Dic. de 2025 a las 10:25
Hi Sam, thanks for mentioning that I wrote a piece of the code, which I posted to Javeria on a previous thread. Javeria, if you see this, you can use the bessel0j code as you see fit but the nitpicky part of my nature wishes you had let the variabIe n (the bessel function order) alone, instead of changing it to l (small L). It's just a detail but in code generally, there are too many fonts where small L and capital i and the number 1 can be confused.

Iniciar sesión para comentar.

Respuestas (1)

Torsten
Torsten el 9 de Dic. de 2025 a las 1:51
Editada: Torsten el 9 de Dic. de 2025 a las 1:54
Although it's slow, the full Newton method seems to work in this case (except for one value of X_kRE):
clear all;
close all;
clc;
tic;
% diary('iter_log.txt');
% diary on
% fprintf('Run started: %s\n', datestr(now));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Parameters from your setup
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
old = false;
if old
N = 20; % Number of N modes
M = 20; % Number of M modes
Q = 20; % Number of Q modes
RI = 34.5; % Inner radius (m)
RE = 47.5; % Outer radius (m)
h = 200; % Water depth (m) % Interface depth (m)
d = 38; % Interface depth (m) % Draft (m)
tau = 0.1; % porosity ratio
X_kRE = linspace(0.0025, 0.16,100); %%%%%% this is now k_0
else
N = 10; % Number of N modes
M = 10; % Number of M modes
Q = 10; % Number of Q modes
RI = 0.4; % Inner radius (m)
RE = 0.8; % Outer radius (m)
h = 1.0; % Water depth (m) % Interface depth (m)
d = 0.3; % Interface depth (m) % Draft (m)
tau = 0.2; % porosity ratio
X_kRE = linspace(0.05, 4.5, 40); %%%%%% this is now k_0
end
b = h-d; % Distance from cylinder bottom to seabed (m)
g = 9.81; % Gravity (m/s^2)
gamma = 1.0; % discharge coefficient
b1 = (1 - tau) / (2 * gamma * tau^2); % nonlinear coeff
tol = 1e-4; % convergence tolerance
max_iter = 100; % max iterations
l = 0; % Azimuthal order
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% === Compute Bessel roots and scaled chi values ===
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
roots = bessel0j(l, Q); % Zeros of J_l(x)
chi = roots ./ RI; % chi_q^l = roots scaled by radius
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ==============Initialize eta0 array before loop
%===============Initialize omega array before loop
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
eta0 = zeros(size(X_kRE)); % Preallocate
omega = zeros(size(X_kRE)); %%%% omega preallocate
% iters_used = zeros(length(X_kRE),1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for idx = 1:length(X_kRE)
wk = X_kRE(idx); % dimensional wavenumber
omega(idx) = sqrt(g * wk * tanh(wk * h)); % dispersion relation
% fprintf('\n--- idx %3d (T=%6.3f s) ---\n', idx, 2*pi/omega(idx));
% drawnow;
%%%%%%%%%%%%% Compute group velocity %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Cg(idx) = (g * tanh(wk * h) + g * wk * h * (sech(wk * h))^2) ...
* omega(idx) / (2 * g * wk * tanh(wk * h));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% =======Compute a1 based on tau
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a1(idx) = 0.93 * (1 - tau) * Cg(idx);
% dissip(idx) = a1(idx)/omega(idx);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%=============== Find derivative of Z0 at z = -d
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Z0d = (cosh(wk * h) * wk * sinh(wk * b)) / (2 * wk * h + sinh(2 * wk * h));
fun_alpha = @(x) omega(idx)^2 + g*x.*tan(x*h); %dispersion equation for evanescent modes
opts_lsq = optimset('Display','none'); % ← add this
%opts_lsq = [];
for n = 1:N
if n == 1
k(n) = -1i * wk;
else
x0_left = (2*n - 3) * pi / (2*h);
x0_right = (2*n - 1) * pi / (2*h);
guess = (x0_left + x0_right)/2;
% Use lsqnonlin for better convergence
k(n) = lsqnonlin(fun_alpha, guess, x0_left, x0_right,opts_lsq);
%%%%%%%%%%%%% Derivative of Z_n at z = -d %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Znd(n) = -k(n) * (cos(k(n)*h) * sin(k(n)*b)) / (2*k(n)*h + sin(2*k(n)*h));
end
end
%% finding the root \lemda_m =m*pi/b%%%%%%
for j=1:M
m(j)=(pi*(j-1))/b;
end
% %%%%%%%%%%%%%%%%%%%%% Define matrix A %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
A = zeros(M,N);
A(1,1) = (cosh(wk*h)*sinh(wk*b))/(wk*b*(2*wk*h+sinh(2*wk*h)))*(besselh(l, wk*RE)) /(dbesselh(l, wk*RE)); % Set A_00
for j = 2:N
A(1,j) =(cos(k(j)*h)*sin(k(j)*b) )/ (k(j)*b*(2*k(j)*h + sin(2*k(j)*h)))*( besselk(l, k(j)*RE) )...
/(dbesselk(l, k(j)*RE)); % Set A_0n
end
for i = 2:M
A(i,1) =(2 * cosh(wk*h) * (-1)^(i-1) * wk*sinh(wk*b)) / (b * (2*wk*h + sinh(2*wk*h))*(wk^2 + m(i)^2))...
* (besselh(l, wk*RE))/ (dbesselh(l, wk*RE)); % Set A_m0
end
for i = 2:M
for j = 2:N
A(i,j) = (2*cos(k(j)*h)*(-1)^(i-1) *k(j)* sin(k(j)*b))/ (b * (2*k(j)*h + sin(2*k(j)*h))*(k(j)^2-m(i)^2))...
*(besselk(l, k(j)*RE)) / (dbesselk(l, k(j)*RE));% Set A_mn
end
end
%%%%%%%%%%%%%%%%%%%%%%%% DefineMatrix B %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
B=zeros(N,M);
B(1,1) = (4*sinh(wk*b)) / (RE * wk*log(RE/RI) *cosh(wk*h)); %set B_00
%%%%%%%%%%%B_0m%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for j = 2:M
Rml_prime_RE = m(j)*(besselk(l, m(j)*RI) * dbesseli(l, m(j)*RE) ...
- besseli(l, m(j)*RI) * dbesselk(l, m(j)*RE))...
/(besselk(l, m(j)*RI) * besseli(l, m(j)*RE) - besselk(l, m(j)*RE) * besseli(l, m(j)*RI));
B(1,j) = Rml_prime_RE * (4 * wk * (-1)^(j-1) * sinh(wk*b)) / (cosh(wk*h) * (wk^2 + m(j)^2));
end
%%%%%%%%%%%B_n0%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=2:N
B(i,1)=(4*sin(k(i)*b))/(RE*k(i)*log(RE/RI)*cos(k(i)*h));% Set B_n0
end
%%%%%%%%%%%%%%%%%%%%%%%%%%B_nm%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=2:N
for j=2:M
Rml_prime_RE = m(j)*(besselk(l, m(j)*RI) * dbesseli(l, m(j)*RE) ...
- besseli(l, m(j)*RI) * dbesselk(l, m(j)*RE))...
/(besselk(l, m(j)*RI) * besseli(l, m(j)*RE) - besselk(l, m(j)*RE) * besseli(l, m(j)*RI));
B(i,j) = Rml_prime_RE * (4 * k(i) * (-1)^(j-1) * sin(k(i)*b)) / (cos(k(i)*h) * (k(i)^2 - m(j)^2));
end
end
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Define Matrix C %%%%%%%%%%%%%%%%%%%%%%%%
C = zeros(N,M);
C(1,1) = -4 * sinh(wk*b) / (RE * wk*log(RE/RI) * cosh(wk*h));
% %%%%% DEfine C0m%%%%%%
for j = 2:M
Rml_prime_star_RE = m(j)*(besseli(l, m(j)*RE) * dbesselk(l, m(j)*RE) ...
- besselk(l, m(j)*RE) * dbesseli(l, m(j)*RE))...
/(besselk(l, m(j)*RI) * besseli(l, m(j)*RE) - besselk(l, m(j)*RE) * besseli(l, m(j)*RI));
C(1,j) = Rml_prime_star_RE * (4 * wk * (-1)^(j-1) * sinh(wk*b)) / (cosh(wk*h) * (wk^2 + m(j)^2));
end
% %%%%%%% Define Cn0%%%%%%
for i = 2:N
C(i,1) = -4 * sin(k(i)*b) / (RE *k(i)* log(RE/RI) * cos(k(i)*h));
end
% % %%%%%% Define Cnm%%%%%%
for i = 2:N
for j =2:M
Rml_prime_star_RE = m(j)*(besseli(l, m(j)*RE) * dbesselk(l, m(j)*RE) ...
- besselk(l, m(j)*RE) * dbesseli(l, m(j)*RE))...
/(besselk(l, m(j)*RI) * besseli(l, m(j)*RE) - besselk(l, m(j)*RE) * besseli(l, m(j)*RI));
C(i,j) = Rml_prime_star_RE * (4 * k(i) * (-1)^(j-1) * sin(k(i)*b)) / (cos(k(i)*h) * (k(i)^2 - m(j)^2));
end
end
%%%%%%% write Matrix D %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
D = zeros(M,N);
%%% write D00 %%%%%%
D(1,1) = (cosh(wk*h) * sinh(wk*b)) / (wk*b * (2*wk*h + sinh(2*wk*h))) * (besselj(l, wk*RI))/ (dbesselj(l, wk*RI));
%%%%% write D0n %%%%%%%%%%
for j =2:N
D(1,j) = (cos(k(j)*h) * sin(k(j)*b)) / (k(j)*b * (2*k(j)*h + sin(2*k(j)*h))) * (besseli(l, k(j)*RI) )/ (dbesseli(l, k(j)*RI));
end
%%%%%% write Dm0 %%%%%%%%%
for i = 2:M
D(i,1) = (2 * cosh(wk*h) * (-1)^(i-1) * wk * sinh(wk*b)) /(b * (2*wk*h + sinh(2*wk*h)) * (wk^2 + m(i)^2))...
*(besselj(l, wk*RI) )/(dbesselj(l, wk*RI));
end
%%%%% Define Dmn%%%%%%%%
for i = 2:M
for j = 2:N
D(i,j) = (2 * cos(k(j)*h) * (-1)^(i-1) * k(j) * sin(k(j)*b)) /(b * (2*k(j)*h + sin(2*k(j)*h)) * (k(j)^2 - m(i)^2))...
*(besseli(l, k(j)*RI)) / (dbesseli(l, k(j)*RI));
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%% Define Matrix E %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
E = zeros(N, M); % Preallocate the matrix E
%%%%% Define E00%%%%%%%%%%%%
E(1,1) = (4 * sinh(wk*b)) / (RI *wk* log(RE/RI) * cosh(wk*h));
%%%% Define Eom %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for j = 2:M
Rml_prime_RI = m(j)*(besselk(l, m(j)*RI) * dbesseli(l, m(j)*RI) ...
- besseli(l, m(j)*RI) * dbesselk(l, m(j)*RI))...
/ (besselk(l, m(j)*RI) * besseli(l, m(j)*RE) - besselk(l, m(j)*RE) * besseli(l, m(j)*RI));
E(1,j) = Rml_prime_RI * (4 * wk * (-1)^(j-1) * sinh(wk*b)) / (cosh(wk*h) * (wk^2 + m(j)^2));
%
end
%%%%%% Define Eno%%%%%%%%%%%%%%
for i = 2:N
E(i,1) = (4 * sin(k(i)*b)) / (RI *k(i)* log(RE/RI) * cos(k(i)*h));
end
for i = 2:N
for j = 2:M
Rml_prime_RI = m(j)*(besselk(l, m(j)*RI) * dbesseli(l, m(j)*RI) ...
- besseli(l, m(j)*RI) * dbesselk(l, m(j)*RI))...
/ (besselk(l, m(j)*RI) * besseli(l, m(j)*RE) - besselk(l, m(j)*RE) * besseli(l, m(j)*RI));
E(i,j) = Rml_prime_RI * (4 * k(i) * (-1)^(j-1) * sin(k(i)*b)) / (cos(k(i)*h) * (k(i)^2 - m(j)^2));
end
end
%%%%%%%%%%%%%%%%%%%%%%%% Now write matrix F %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
F = zeros(N,M);
%%%%%%%% Define F00 %%%%%%%%%%
F(1,1) = (-4 * sinh(wk*b)) / (RI * wk*log(RE/RI) * cosh(wk*h));
% %%%%%% Define F0m%%%%
for j = 2:M
Rml_star_prime_RI = m(j)*(besseli(l, m(j)*RE) * dbesselk(l, m(j)*RI) ...
- besselk(l, m(j)*RE) * dbesseli(l, m(j)*RI))/((besselk(l, m(j)*RI) ...
* besseli(l, m(j)*RE) - besselk(l, m(j)*RE) * besseli(l, m(j)*RI)));
F(1,j) = Rml_star_prime_RI * (4 * wk * (-1)^(j-1) * sinh(wk*b)) / (cosh(wk*h) * (wk^2 + m(j)^2));
end
%%%%% Defin Fn0%%%%%%
for i = 2:N
F(i,1) = (-4 * sin(k(i)*b)) / (RI *k(i)* log(RE/RI) * cos(k(i)*h));
end
%%%%%%% Define Fnm %%%%%%%
for i = 2:N
for j = 2:M
Rml_star_prime_RI = m(j)*(besseli(l, m(j)*RE) * dbesselk(l, m(j)*RI) ...
- besselk(l, m(j)*RE) * dbesseli(l, m(j)*RI))/((besselk(l, m(j)*RI) ...
* besseli(l, m(j)*RE) - besselk(l, m(j)*RE) * besseli(l, m(j)*RI)));
F(i,j) = Rml_star_prime_RI * (4 * k(i)* (-1)^(j-1) * sin(k(i)*b)) / (cos(k(i)*h) * (k(i)^2 - m(j)^2));
end
end
% % %%%%%%%%%% Write Matrix W %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
W = zeros(N,Q);
% %%W_{0q}
for q = 1:Q
r = exp(-2*chi(q)*b); % e^{-2*chi*b}
coth_chib = (1 + r) / (1 - r); % coth(chi*b) via decaying exp
W(1,q) = -(4*chi(q)/cosh(wk*h))*(( wk*sinh(wk*b)*coth_chib - chi(q)*cosh(wk*b) ) / ( wk^2 - chi(q)^2 ) ); %prof.chen
%
% % W(1, q) = - (4 * chi(q) / cosh(wk * h)) * (chi(q) * sinh(chi(q) * b) * cosh(wk * b) - wk * sinh(wk * b) * cosh(chi(q) * b)) ...
% % / ((chi(q)^2 - wk^2) * sinh(chi(q) * b));
end
% % %%% Write W_{nq}
for n = 2:N
for q = 1:Q
r = exp(-2*chi(q)*b); % e^{-2*chi*b}
coth_chib = (1 + r) / (1 - r); % coth(chi*b), stable
W(n,q) = -(4*chi(q)/cos(k(n)*h)) * ...
( ( k(n)*sin(k(n)*b)*coth_chib + chi(q)*cos(k(n)*b) ) ... %prof.chen
/ ( k(n)^2 + chi(q)^2 ) );
% % W(n, q) = - (4 * chi(q) / cos(k(n) * h)) * (chi(q) * sinh(chi(q) * b) * cos(k(n) * b) + k(n) * sin(k(n) * b) * cosh(chi(q) * b)) ...
% % / ((chi(q)^2 + k(n)^2) * sinh(chi(q) * b));
end
end
%%%%%%%%%%%%%%%%%%%%%%%Find E1_{q}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
f2 = omega(idx)^2 / g;
E1 = zeros(Q,1);
S_q = zeros(Q,1);
for q = 1:Q
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% this expression is same as prof. Chen code
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
exp2chi_d = exp(-2 * chi(q) * d); % e^{-2*chi*d}
exp2chi_b = exp(-2 * chi(q) * b); % e^{-2*chi*(h-d)}
exp2chi_h = exp(-2 * chi(q) * h); % e^{-2*chi*h}
exp1chi_d = exp(-chi(q) * d); % e^{-chi*d}
% intermediate ratio (same order as Fortran)
BB = (f2 - chi(q)) * (exp2chi_b / exp2chi_d);
BB = BB + (f2 + chi(q)) * (1 + 2 * exp2chi_b);
BB = BB / (f2 - chi(q) + (f2 + chi(q)) * exp2chi_d);
BB = BB / (1 + exp2chi_b);
% final coefficient
E1(q) = 2 * (BB * exp2chi_d - 1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% This expression is that one derived directly
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% % N0, D0, H0 exactly as in the math above
% N0 = (chi(q) - f2) + (chi(q) + f2) * exp2chi_h;
% D0 = (f2 - chi(q)) + (f2 + chi(q)) * exp2chi_d;
% H0 = 1 + exp2chi_b;
%
% % final coefficient (no add/subtract step)
% E1(q) = 2 * N0 / (D0 * H0);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% This one is the hyperbolic one form
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% num = chi(q)*cosh(chi(q)*h) - f2*sinh(chi(q)*h);
% den = (f2*cosh(chi(q)*d) - chi(q)*sinh(chi(q)*d)) * cosh(chi(q)*(h - d)); % or: * cosh(chi(q)*b)
% E1(q) = num / den;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%% This is the upper region velocity potential at z=0, write
%%%%%%%%%%%%%%%% from prof.chen code
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CCmc = 1 + (exp2chi_b / exp2chi_d) + 2*exp2chi_b;
CCmc = CCmc / (1 + exp2chi_b);
CCmc = BB * (1 + exp2chi_d) - CCmc;
S_q(q) = CCmc * exp1chi_d; % this equals the summand value for this q
% --- direct hyperbolic (exact) ---
% % % C_hyp = ( chi(q)*cosh(chi(q)*h) - f2*sinh(chi(q)*h) ) ...
% % % / ( (f2*cosh(chi(q)*d) - chi(q)*sinh(chi(q)*d)) * cosh(chi(q)*b) );
% % %
% % % S_hyp(q) = C_hyp * cosh(chi(q)*d) + sinh(chi(q)*h) / cosh(chi(q)*b); % summand
end
% H(q): diagonal term (exponential form)
H1 = zeros(Q,1);
for q = 1:Q
% dissip =
r = exp(-2*chi(q)*b); % e^{-2*chi*b}
mid = 4*r/(1 - r^2) - E1(q); % 2/sinh(2*chi*b) - C_m
H1(q) = mid + 1i*a1(idx)*chi(q)/omega(idx); % mid + i*(a1/w)*chi
end
H = diag(H1);
%%%%%%%%%%matric G%%%%%%%%%%%%%%%%%%
G = zeros(Q, N); % Preallocate
for q = 1:Q
G(q,1) = 1i * 2*(a1(idx)/(omega(idx)*RI))* Z0d ...
* ( chi(q) / (chi(q)^2 - wk^2) )* ( besselj(l, wk*RI) / dbesselj(l, wk*RI) ); % this one is my calculated
end
% %G_qn
for q = 1:Q
for n = 2:N
G(q, n) = 1i * 2*(a1(idx)/(omega(idx)*RI))* Znd(n) ...
* ( chi(q) / (k(n)^2 + chi(q)^2) )* ( besseli(l, k(n)*RI) / dbesseli(l, k(n)*RI) ); % this one is my calculated
end
end
% % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %Define the right hand side vector
U = zeros(2*M + 2*N + Q, 1); % Full vector, M+N+M+N+Q elements
% % Block 1: U (size M = 4)
for i = 1:M
if i == 1
U(i, 1) = (sinh(wk*b))/((b*wk)*cosh(wk*h))*besselj(l, wk*RE) ; % Z_0^l
else
U(i, 1) = (2 *wk*(-1)^(i-1)*sinh(wk*b))/(b *(wk^2 +m(i)^2)*cosh(wk*h))*besselj(l, wk*RE); %Z_m^l
end
end
% % Block 2: Y (size N = 3)
for j = 1:N
if j == 1
U(j + M, 1) = -dbesselj(l, wk*RE) * (2*wk*h + sinh(2*wk*h)) /(cosh(wk*h)^2); % Y_0^l
else
U(j + M, 1) = 0; % Y_n^l
end
end
% % Block 3: X (size M = 4)
for i = 1:M
U(i + M + N, 1) = 0; % X_0^l, X_m^l
end
% Block 4: W (size N = 3)
for j = 1:N
U(j + M + N + M, 1) = 0; % W_0^l, W_n^l
end
for q = 1:Q
U(2*M + 2*N + q) = -(1i*b1/omega(idx)) * (2/(RI^2 * dbesselj(l, chi(q)*RI)));
end
% % Identity matrices
I_M = eye(M);
I_N = eye(N);
% Zero matrices
ZMM = zeros(M, M);
ZMN = zeros(M, N);
ZNM = zeros(N, M);
ZNN = zeros(N, N);
ZMQ = zeros(M,Q);
ZNQ = zeros(N,Q);
ZQM = zeros(Q,M);
ZQN = zeros(Q,N);
% Construct the full block matrix S
S = [ I_M, -A, ZMM, ZMN, ZMQ;
-B, I_N, -C, ZNN, ZNQ;
ZMM, ZMN, I_M, -D, ZMQ;
-E, ZNN, -F, I_N, -W;
ZQM, ZQN, ZQM, -G, H ];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
solution_method = 0;
if solution_method == 0
if idx==1
psi0 = zeros(Q,1);
else
if exitflag == 1
psi0 = psi;
else
psi0 = zeros(Q,1);
end
end
f = @(psi)fun(psi,M,N,Q,S,U,Z0d,wk,RI,l,Znd,k,chi);
[psi,~,exitflag] = fsolve(f,psi0,optimset('Display','none'));
[~,d_vec,e_vec] = f(psi);
elseif solution_method == 1
converged = false;
psi = zeros(Q,1);
T_old = []; % <-- track the full solution from prev. iter
% T_old = zeros(2*M + 2*N + Q, 1); % previous unknowns (seed)
for iter = 1:max_iter
% (A) overwrite ONLY Block 5 of U from current psi
for q = 1:Q
U(2*M + 2*N + q) = -(1i*b1/omega(idx)) * (2/(RI^2 * dbesselj(l, chi(q)*RI))) * psi(q);
end
T = S \ U; % Solve the linear system
% T = pinv(S) * U; % Use pseudoinverse for stability
b_vec = T(1:M); % Coefficients b^l
a_vec = T(M+1 : M+N); % Coefficients a^l
c_vec = T(M+N+1 : 2*M+N); % Coefficients c^l
d_vec = T(2*M+N+1:2*M+2*N); % Coefficients d^l
e_vec = T(2*M+2*N+1:end); % (Q×1)
% (D) update psi for NEXT iteration from CURRENT coefficients
for q = 1:Q
integrand = @(r) abs(v_D(N,Q,r,Z0d,wk,RI,l,d_vec,Znd,k,e_vec,chi)) ...
.* v_D(N,Q,r,Z0d,wk,RI,l,d_vec,Znd,k,e_vec,chi) ...
.* besselj(l, chi(q)*r) .* r;
psi(q) = integral(integrand, 0, RI, 'AbsTol',1e-8, 'RelTol',1e-6);
end
% % % drawnow; % optional: flush output each iter
% === compact per-iteration print, only for T in [5,35] ===
% Tcur = 2*pi/omega(idx);
% if Tcur >= 5 && Tcur <= 35
% fprintf('idx %3d | iter %2d | ||psi|| = %.3e\n', idx, iter, norm(psi));
% drawnow;
% end
% % % % (E) convergence on ALL unknowns (T vs previous T)
% --- per-iteration diagnostics (optional) ---
if ~isempty(T_old)
diff_T = max(abs(T - T_old));
% Tcur = 2*pi/omega(idx);
% if Tcur >= 5 && Tcur <= 35
% fprintf('k0 idx %3d | iter %2d: max|ΔT| = %.3e, ||psi|| = %.3e\n', ...
% idx, iter, diff_T, norm(psi));
% drawnow; % ← add this to flush each iteration line too
% end
if diff_T < tol
converged = true;
break
end
end
T_old = T;
end % <<< end of iter loop
end
if solution_method==0
exitflag
elseif solution_method==1
converged
end
%T
% % ---- ONE summary line per frequency (place it here) ----
% iters_used(idx) = iter; % how many iterations this frequency needed
% fprintf('idx %3d (T=%6.3f s): iters=%2d\n', idx, 2*pi/omega(idx), iter);
% drawnow;
% -------------- end nonlinear iteration --------------
% % %%%%%%%%% Wave motion%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
term1 = (d_vec(1)*cosh(wk*h)^2) / ((2*wk*h + sinh(2*wk*h)) * dbesselj(l, wk*RI));
sum1 = 0;
for n =2:N
sum1 = sum1 + d_vec(n)*cos(k(n)*h)^2/ ((2*k(n)*h + sin(2*k(n)*h))* dbesseli(l, k(n)*RI));
end
phiUell = 0;
for q =1:Q
phiUell = phiUell +e_vec(q)* S_q(q);
end
eta0(idx) = abs(term1+sum1+phiUell);
end
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % % Plotting Data
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% %
% figure(2); clf;
% >>> CHANGES START (3): one figure = two taus + Dr. Chen only
%if old
%plot(2*pi./omega, eta0, 'k', 'LineWidth', 1.5); %%% this is T which is T= 2*pi/omega plotting against T
%else
plot(omega.^2 * RE / g, eta0, 'k', 'LineWidth', 1.5); %%% this is T which is T= 2*pi/omega plotting against T
%end
hold on; % Add extra plots on same figure
% % % %
% % % % % Now plot the 3 CSV experimental points
% scatter(data_chen(:,1), data_chen(:,2), 30, 'r', 'o', 'filled');
% % scatter(data_liu(:,1), data_liu(:,2), 30, 'g', 's', 'filled');
% scatter(data_exp(:,1), data_exp(:,2), 30, 'b', '^', 'filled');
xlabel('$T$', 'Interpreter', 'latex');
ylabel('$|\eta / (iA)|$', 'Interpreter', 'latex');
title('Wave motion amplitude for $R_E = 138$', 'Interpreter', 'latex');
legend({'$\tau=0.2$','Model test'}, ...
'Interpreter','latex','Location','northwest');
grid on;
% xlim([5 35]); % Match the reference plot
% ylim([0 4.5]); % Optional: based on expected peak height
%xlim([0 4]); % Match the reference plot
% ylim([0 7]); % Optional: based on expected peak height
% === plotting section ===
% diary off
elapsedTime = toc;
disp(['Time consuming = ', num2str(elapsedTime), ' s']);
function [res,d_vec,e_vec] = fun(psi,M,N,Q,S,U,Z0d,wk,RI,l,Znd,k,chi)
for q = 1:Q
U(2*M + 2*N + q) = U(2*M + 2*N + q) * psi(q);
end
T = S\U;
d_vec = T(2*M+N+1:2*M+2*N); % Coefficients d^l
e_vec = T(2*M+2*N+1:end); % (Q×1)
for q = 1:Q
integrand = @(r) abs(v_D(N,Q,r,Z0d,wk,RI,l,d_vec,Znd,k,e_vec,chi)) ...
.* v_D(N,Q,r,Z0d,wk,RI,l,d_vec,Znd,k,e_vec,chi) ...
.* besselj(l, chi(q)*r) .* r;
res(q) = psi(q) - integral(integrand, 0, RI, 'AbsTol',1e-8, 'RelTol',1e-6);
end
end
function out = dbesselk(l, z)
%DBESSELK Derivative of the modified Bessel function of the second kind
% out = dbesselk(l, z)
% Returns d/dz [K_l(z)] using the recurrence formula:
% K_l'(z) = -0.5 * (K_{l-1}(z) + K_{l+1}(z))
out = -0.5 * (besselk(l-1, z) + besselk(l+1, z));
end
function out = dbesselj(l, z)
%DBESSELJ Derivative of the Bessel function of the first kind
% out = dbesselj(l, z)
% Returns d/dz [J_l(z)] using the recurrence formula:
% J_l'(z) = 0.5 * (J_{l-1}(z) - J_{l+1}(z))
out = 0.5 * (besselj(l-1, z) - besselj(l+1, z));
end
function out = dbesseli(l, z)
%DBESSELI Derivative of the modified Bessel function of the first kind
% out = dbesseli(l, z)
% Returns d/dz [I_l(z)] using the recurrence formula:
% I_l'(z) = 0.5 * (I_{l-1}(z) + I_{l+1}(z))
out = 0.5 * (besseli(l-1, z) + besseli(l+1, z));
end
function out = dbesselh(l, z)
%DBESSELH Derivative of the Hankel function of the first kind
% out = dbesselh(l, z)
% Returns d/dz [H_l^{(1)}(z)] using the recurrence formula:
% H_l^{(1)'}(z) = 0.5 * (H_{l-1}^{(1)}(z) - H_{l+1}^{(1)}(z))
out = 0.5 * (besselh(l-1, 1, z) - besselh(l+1, 1, z));
end
function x = bessel0j(l,q,opt)
% a row vector of the first q roots of bessel function Jl(x), integer order.
% if opt = 'd', row vector of the first q roots of dJl(x)/dx, integer order.
% if opt is not provided, the default is zeros of Jl(x).
% all roots are positive, except when l=0,
% x=0 is included as a root of dJ0(x)/dx (standard convention).
%
% starting point for for zeros of Jl was borrowed from Cleve Moler,
% but the starting points for both Jl and Jl' can be found in
% Abramowitz and Stegun 9.5.12, 9.5.13.
%
% David Goodmanson
%
% x = bessel0j(l,q,opt)
k = 1:q;
if nargin==3 && opt=='d'
beta = (k + l/2 - 3/4)*pi;
mu = 4*l^2;
x = beta - (mu+3)./(8*beta) - 4*(7*mu^2+82*mu-9)./(3*(8*beta).^3);
for j=1:8
xnew = x - besseljd(l,x)./ ...
(besselj(l,x).*((l^2./x.^2)-1) -besseljd(l,x)./x);
x = xnew;
end
if l==0
x(1) = 0; % correct a small numerical difference from 0
end
else
beta = (k + l/2 - 1/4)*pi;
mu = 4*l^2;
x = beta - (mu-1)./(8*beta) - 4*(mu-1)*(7*mu-31)./(3*(8*beta).^3);
for j=1:8
xnew = x - besselj(l,x)./besseljd(l,x);
x = xnew;
end
end
end
% --- Local helper function for derivative of Bessel function ---
function dJ = besseljd(l, x)
dJ = 0.5 * (besselj(l - 1, x) - besselj(l + 1, x));
end
function v_D_val = v_D(N, Q, r, Z0d, wk, RI, l, d_vec, Znd, k, e_vec, chi)
% n = 0 mode
term1 = (d_vec(1) * Z0d * besselj(l, wk*r)) / (dbesselj(l, wk*RI));
% n >= 2 evanescent sum
sum1 = 0;
for nidx = 2:N
sum1 = sum1 + d_vec(nidx) * Znd(nidx) * besseli(l, k(nidx)*r) ...
/( dbesseli(l, k(nidx)*RI));
end
% q = 1..Q radial sum
sum2 = 0;
for qidx = 1:Q
sum2 = sum2 + e_vec(qidx) *chi(qidx)* besselj(l, chi(qidx)*r) / dbesselj(l, chi(qidx)*RI);
end
v_D_val = term1 + sum1 + sum2;
end
  38 comentarios
Javeria
Javeria hace alrededor de 9 horas
@Torstenlicense('test','Distrib_Computing_Toolbox')
ans =
1
i tested my MATLAB
Torsten
Torsten hace alrededor de 8 horas
Editada: Torsten hace alrededor de 8 horas
First test whether the code works if you don't use the solution of the last step for a restart without parallel computing:
Replace
% Compute starting solution
x = X_kRE_min;
[converged,iter,resnorm,exitflag,sol,t,eta0,...
A_vec,B_vec,C_vec,D_vec,E_vec,...
AmA_vec,BmB_vec,FmC_vec,DmD_vec,WmE_vec] = ...
get_solution(N,M,Q,RI,RE,h,d,tau,x,g,gamma,l,...
solution_method,...
solver_method,...
TolX,TolF,itermax,...
TolX_nleq,TolFun_nleq,MaxIter_nleq,MaxFunEvals_nleq,...
AutoScaling_nleq,ComplexEqn_nleq,Updating_nleq,...
TypicalX_nleq,Jacobian_nleq,...
urelax,tol,max_iter,...
integral_method,RelTol_integral,AbsTol_integral,nr,...
solini);
if exitflag == 1 || converged == true
start = true;
else
start = false;
end
% If start in X_kRE_min is successful, continue solution for complete X_kRE vector
if start
disp("Starting computations ...");
disp(" ");
T = zeros(1,nXsteps+1);
Eta0 = zeros(1,nXsteps+1);
T(1) = t;
Eta0(1) = eta0;
Tfull(1) = t;
Eta0full(1)= eta0;
ns = 1;
%dx = stepX;
%Dx = stepX;
for i = 2:nXsteps+1
Xstart = X_kRE(i-1);
Xend = X_kRE(i);
%x = Xstart + Dx;
x = Xend;
dx = stepX;
sol0 = sol;
finished = false;
nsucc = 0;
while ~finished && dx >= stepX_min
[converged,iter,resnorm,exitflag,sol,t,eta0,...
A_vec,B_vec,C_vec,D_vec,E_vec,...
AmA_vec,BmB_vec,FmC_vec,DmD_vec,WmE_vec] = ... ...
get_solution(N,M,Q,RI,RE,h,d,tau,x,g,gamma,l,...
solution_method,...
solver_method,...
TolX,TolF,itermax,...
TolX_nleq,TolFun_nleq,MaxIter_nleq,MaxFunEvals_nleq,...
AutoScaling_nleq,ComplexEqn_nleq,Updating_nleq,...
TypicalX_nleq,Jacobian_nleq,...
urelax,tol,max_iter,...
integral_method,RelTol_integral,AbsTol_integral,nr,...
sol0);
if (solution_method <= 0 && ~converged) || ...
(solution_method > 0 && exitflag ~=1)
x
dx
eta0
if solution_method <= 0
converged
iter
else
exitflag
end
resnorm
disp(" ");
end
if exitflag == 1 || converged == true
ns = ns + 1;
Tfull(ns) = t;
Eta0full(ns) = eta0;
if abs(Xend - x) < 1e-8
finished = true;
break
end
%Dx = min(stepX,2*dx);
%Dx = dx;
nsucc = nsucc + 1;
if nsucc >= 3
dx = min(Xend-x,2*dx);
nsucc = 0;
else
dx = min(Xend-x,dx);
end
x = x + dx;
sol0 = sol;
else
nsucc = 0;
x = x - dx;
dx = dx/2;
%Dx = dx;
x = x + dx;
sol0 = sol0;
end
end
x
dx
eta0
disp(" ");
T(i) = t;
Eta0(i) = eta0;
end
% Write results to file ...
AA = [T.',Eta0.'];
% ... for prescribed grid points
fid = fopen('data_T', 'w+');
for i = 1:size(AA, 1)
fprintf(fid, '%f ', AA(i,:));
fprintf(fid, '\n');
end
fclose(fid);
AA = [Tfull.',Eta0full.'];
% ... for complete set of used grid points
fid = fopen('data_T_full', 'w+');
for i = 1:size(AA, 1)
fprintf(fid, '%f ', AA(i,:));
fprintf(fid, '\n');
end
fclose(fid);
hold on
plot(T,Eta0)
plot(Tfull,Eta0full)
hold off
grid on
size(Eta0)
size(Eta0full)
else
disp("Start was not successful.")
end
by
fid = fopen('data.txt', 'w+');
T = zeros(1,nXsteps+1);
Eta0 = zeros(1,nXsteps+1);
for i = 1:nXsteps+1
x = X_kRE(i);
[converged,iter,resnorm,exitflag,sol,t,eta0,...
A_vec,B_vec,C_vec,D_vec,E_vec,...
AmA_vec,BmB_vec,FmC_vec,DmD_vec,WmE_vec] = ...
get_solution(N,M,Q,RI,RE,h,d,tau,x,g,gamma,l,...
solution_method,...
solver_method,...
TolX,TolF,itermax,...
TolX_nleq,TolFun_nleq,MaxIter_nleq,MaxFunEvals_nleq,...
AutoScaling_nleq,ComplexEqn_nleq,Updating_nleq,...
TypicalX_nleq,Jacobian_nleq,...
urelax,tol,max_iter,...
integral_method,RelTol_integral,AbsTol_integral,nr,...
solini);
T(i) = t;
Eta0(i) = eta0;
fprintf(fid, '%f %f \n ',t,eta0);
end
fclose(fid);
plot(T,Eta0)
grid on
and see if it works for the case
N = 10; % Number of N modes
M = 10; % Number of M modes
Q = 10; % Number of Q modes
RI = 0.4; % Inner radius (m)
RE = 0.8; % Outer radius (m)
h = 1.0; % Water depth (m) % Interface depth (m)
d = 0.3; % Interface depth (m) % Draft (m)
tau = 0.2; % porosity ratio
g = 9.81; % Gravity (m/s^2)
gamma = 1.0; % discharge coefficient
l = 0; % Azimuthal order
X_kRE_min = 0.05
X_kRE_max = 4.5 %%%%%% this is now k_0 ;
nXsteps = 40
stepX = (X_kRE_max-X_kRE_min)/...
nXsteps;
X_kRE = linspace(X_kRE_min,X_kRE_max,nXsteps+1);
If yes, try parallelizing the loop with "parfor". I have no experience with parallel computing - so if you have problems, you will need to open a new question.

Iniciar sesión para comentar.

Categorías

Más información sobre Linear Algebra en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by