imuSensor and Allan Variance
5 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hello everyone,
I am creating an IMU simulation using the built-in imuSensor model in MATLAB. The block includes several parameters that define IMU noise characteristics, but I do not fully understand how these parameters relate to Allan variance–derived noise coefficients.
Here is the list of gyroscope parameters available in
------------------------------------------------------------------------------------------
gyroparams with properties:
MeasurementRange: Inf rad/s
Resolution: 0 (rad/s)/LSB
ConstantBias: [0 0 0] rad/s
AxesMisalignment: [3⨯3 double] %
NoiseDensity: [0 0 0] (rad/s)/√Hz
BiasInstability: [0 0 0] rad/s
RandomWalk: [0 0 0] (rad/s)*√Hz
NoiseType: "double-sided"
BiasInstabilityCoefficients: [1⨯1 struct]
TemperatureBias: [0 0 0] (rad/s)/°C
TemperatureScaleFactor: [0 0 0] %/°C
AccelerationBias: [0 0 0] (rad/s)/(m/s²)
------------------------------------------------------------------------------------------
I have estimated my sensor noise parameters from Allan variance analysis, specifically:
- ARW (N)
- Bias Instability (B)
- Rate Random Walk (K)
My goal is to correctly map these Allan variance parameters N, B, and K to the corresponding imuSensor block parameters:
- NoiseDensity
- BiasInstability
- RandomWalk
I would appreciate clarification on how these quantities correspond mathematically and physically, and how to correctly convert Allan variance results into the parameters expected by MATLAB’s IMU sensor model.
0 comentarios
Respuestas (0)
Ver también
Categorías
Más información sobre Power Converters en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!