Borrar filtros
Borrar filtros

fitting data with equation

1 visualización (últimos 30 días)
sarah
sarah el 29 de Mayo de 2015
Comentada: Star Strider el 30 de Mayo de 2015
Hi guys, so I have alot of experimental data in column matrix y. And I want to use the equation below to find the best fit for my data y. This means have constant b adjusted with x varying, I know that x typically ranges from 1 to 5 with y and b ranges from 0 to 2.
I'm thinking of using a double loop. Would anyone give me tips on how to solve for it effectively? Thanks in advance. The equation is:
y= (1-0.05*x^(b))/(1-0.05*x^b)^2

Respuesta aceptada

Star Strider
Star Strider el 29 de Mayo de 2015
I would use a nonlinear curve fitting function such as nlinfit, lsqcurvefit (or fminsearch indirectly).
However if your (x,y)>0, are not noisy, y>1, and you want an estimate of ‘b’, this might work:
b = log(20*(1-1./y))./log(x);
Otherwise, use a nonlinear parameter estimation routine.
  4 comentarios
sarah
sarah el 30 de Mayo de 2015
And may I ask how did you derive this expression? Thanks
Star Strider
Star Strider el 30 de Mayo de 2015
Sure!
y = (1-0.05*x^b)/((1-0.05*x^b)^2
(1/y) = 1-0.05*x^b
(1-(1/y))*20 = x^b
x = ((1-(1/y))*20)^(1/b)
Then vectorise it to do the calculation:
x = ((1-(1./y))*20).^(1./b);

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Least Squares en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by