NaN Solution Problem with erfi() and erf()

3 visualizaciones (últimos 30 días)
imarquez
imarquez el 6 de Ag. de 2015
Editada: Stephen23 el 11 de Ag. de 2015
So when I solve for Ff only the first column (1 through 2) is returned with values and the rest are NaN and all of the values for Zf are NaN. Is there any way that I can get a number value out of these? I need them because I'm trying to graph something.
I have tried using erf() and just making whats inside the erf() function a real number but it isn't coming out like it should that way. Any suggestions?
if true
format long
a = 1
b = 3*10.^-7
c = 5*10.^-8
f0 = 4*10.^9
sigma = 0.2
t0 = 0
tmax = 2*b
t = linspace(t0, tmax)
f = linspace(10.^6, 10.^10)
omega0 = 2*pi*f0
yt = a*exp((-(t-b).^2)/((2*c).^2))
figure(1)
plot(t,yt)
zt = yt.*(1-((sigma/2)*(1-sin(omega0*t))))
figure(2)
plot(t,zt)
G = -2.*pi.*f.*(pi.*c.^2.*f + sqrt(-1).*b)
D = (((b-(sqrt(-1)).*2.*pi.*c.^2.*f-t0)/(sqrt(2).*c)))
E = (((b-(sqrt(-1)).*2.*pi.*c.^2.*f-tmax)/(sqrt(2).*c)))
Ff = sqrt(pi/2).*a.*c.*exp(G).*((-sqrt(-1).*(erfi(-sqrt(-1).*D)))-((-sqrt(-1).*(erfi(-sqrt(-1).*E)))))
Zf = ((1-(sigma/2)).*Ff) + (sqrt(-1).*sqrt(pi/2).*((a.*c.*sigma)/4).*exp(-((2.*pi.*f+omega0).*(c.^2.*(2.*pi.*f+omega0)+2.*sqrt(-1).*b)))).*(-exp(4.*pi.*c.^2.*f.*omega0+2.*sqrt(-1).*b.*omega0).*((-sqrt(-1).*erfi(((tmax-b+sqrt(-1).*c.^2).*(2.*pi.*f-omega0))/(sqrt(2).*c)))-(-sqrt(-1).*erfi(((t0-b+sqrt(-1).*c.^2).*(2.*pi.*f-omega0))/(sqrt(2).*c))))+(-sqrt(-1).*(erfi(((tmax-b+sqrt(-1)*c.^2).*(2.*pi.*f+omega0))/(sqrt(-1).*c))))-(-sqrt(-1).*erfi(((t0-b+sqrt(-1).*c.^2).*(2.*pi.*f+omega0))/(sqrt(-1).*c))))
figure(3)
plot(f,Zf)
% code
end

Respuesta aceptada

Ghada Saleh
Ghada Saleh el 11 de Ag. de 2015
Hi Imarquez,
The issue you encountered is not because of 'erfi', it is because you are exceeding the maximum floating number that can be represented in MATLAB. Basically you are computing 'inf-inf' which results in 'NAN'. The 'inf' is a result of calculating 'erfi(c)' where 'c' is some large number. Note that the definition of 'erfi' is an integration of exponential square. To see that, try the following command in MATLAB:
>> exp(200^2)
ans =
Inf
Hence,
>> erfi(200)
ans =
Inf
since, in the calculation in 'Ff' and 'Zf' you have 'inf - inf', you end up with 'NAN' value.
I hope this helps,
Ghada
  2 comentarios
imarquez
imarquez el 11 de Ag. de 2015
That makes a lot of sense now. This is a long shot, but do you know if excel will be able to return a value based on the same calculation?
Stephen23
Stephen23 el 11 de Ag. de 2015
Editada: Stephen23 el 11 de Ag. de 2015
Consider how large those numbers would be, and read this:

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Mathematics en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by