NaN Solution Problem with erfi() and erf()
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
imarquez
el 6 de Ag. de 2015
So when I solve for Ff only the first column (1 through 2) is returned with values and the rest are NaN and all of the values for Zf are NaN. Is there any way that I can get a number value out of these? I need them because I'm trying to graph something.
I have tried using erf() and just making whats inside the erf() function a real number but it isn't coming out like it should that way. Any suggestions?
if true
format long
a = 1
b = 3*10.^-7
c = 5*10.^-8
f0 = 4*10.^9
sigma = 0.2
t0 = 0
tmax = 2*b
t = linspace(t0, tmax)
f = linspace(10.^6, 10.^10)
omega0 = 2*pi*f0
yt = a*exp((-(t-b).^2)/((2*c).^2))
figure(1)
plot(t,yt)
zt = yt.*(1-((sigma/2)*(1-sin(omega0*t))))
figure(2)
plot(t,zt)
G = -2.*pi.*f.*(pi.*c.^2.*f + sqrt(-1).*b)
D = (((b-(sqrt(-1)).*2.*pi.*c.^2.*f-t0)/(sqrt(2).*c)))
E = (((b-(sqrt(-1)).*2.*pi.*c.^2.*f-tmax)/(sqrt(2).*c)))
Ff = sqrt(pi/2).*a.*c.*exp(G).*((-sqrt(-1).*(erfi(-sqrt(-1).*D)))-((-sqrt(-1).*(erfi(-sqrt(-1).*E)))))
Zf = ((1-(sigma/2)).*Ff) + (sqrt(-1).*sqrt(pi/2).*((a.*c.*sigma)/4).*exp(-((2.*pi.*f+omega0).*(c.^2.*(2.*pi.*f+omega0)+2.*sqrt(-1).*b)))).*(-exp(4.*pi.*c.^2.*f.*omega0+2.*sqrt(-1).*b.*omega0).*((-sqrt(-1).*erfi(((tmax-b+sqrt(-1).*c.^2).*(2.*pi.*f-omega0))/(sqrt(2).*c)))-(-sqrt(-1).*erfi(((t0-b+sqrt(-1).*c.^2).*(2.*pi.*f-omega0))/(sqrt(2).*c))))+(-sqrt(-1).*(erfi(((tmax-b+sqrt(-1)*c.^2).*(2.*pi.*f+omega0))/(sqrt(-1).*c))))-(-sqrt(-1).*erfi(((t0-b+sqrt(-1).*c.^2).*(2.*pi.*f+omega0))/(sqrt(-1).*c))))
figure(3)
plot(f,Zf)
% code
end
0 comentarios
Respuesta aceptada
Ghada Saleh
el 11 de Ag. de 2015
Hi Imarquez,
The issue you encountered is not because of 'erfi', it is because you are exceeding the maximum floating number that can be represented in MATLAB. Basically you are computing 'inf-inf' which results in 'NAN'. The 'inf' is a result of calculating 'erfi(c)' where 'c' is some large number. Note that the definition of 'erfi' is an integration of exponential square. To see that, try the following command in MATLAB:
>> exp(200^2)
ans =
Inf
Hence,
>> erfi(200)
ans =
Inf
since, in the calculation in 'Ff' and 'Zf' you have 'inf - inf', you end up with 'NAN' value.
I hope this helps,
Ghada
Más respuestas (0)
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!