How do I use PCA

2 visualizaciones (últimos 30 días)
kash
kash el 17 de Dic. de 2011
Respondida: Gautam el 2 de En. de 2025
I have extracted features of an image,and stored in an folder,now i want to select best features from it using PCA AND have to comapre these features ,with the features of query image and retrieve it,please help

Respuestas (1)

Gautam
Gautam el 2 de En. de 2025
Hello kash,
To perform feature selection using PCA, you can follow the MATLAB code below:
% Center the data
meanFeatures = mean(Features);
centeredFeatures = allFeatures - meanFeatures;
% Perform PCA
[coeff, score, ~, ~, explained] = pca(centeredFeatures);
% Select the number of principal components to retain (e.g., 95% variance)
cumulativeVariance = cumsum(explained);
numComponents = find(cumulativeVariance >= 95, 1);
% Reduce dimensionality
reducedFeatures = score(:, 1:numComponents);
You can further use Euclidean distance to compare the query features with the stored features, and identify the closest matches

Categorías

Más información sobre Dimensionality Reduction and Feature Extraction en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by