How do I use PCA
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I have extracted features of an image,and stored in an folder,now i want to select best features from it using PCA AND have to comapre these features ,with the features of query image and retrieve it,please help
0 comentarios
Respuestas (1)
Gautam
el 2 de En. de 2025
Hello kash,
To perform feature selection using PCA, you can follow the MATLAB code below:
% Center the data
meanFeatures = mean(Features);
centeredFeatures = allFeatures - meanFeatures;
% Perform PCA
[coeff, score, ~, ~, explained] = pca(centeredFeatures);
% Select the number of principal components to retain (e.g., 95% variance)
cumulativeVariance = cumsum(explained);
numComponents = find(cumulativeVariance >= 95, 1);
% Reduce dimensionality
reducedFeatures = score(:, 1:numComponents);
You can further use Euclidean distance to compare the query features with the stored features, and identify the closest matches
0 comentarios
Ver también
Categorías
Más información sobre Dimensionality Reduction and Feature Extraction en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!