Use Classification Neural Network Model for another Dataset
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
mustafa alnasser
el 19 de Sept. de 2015
Comentada: Greg Heath
el 20 de Sept. de 2015
Dear All; I have built an AI model to classify the data using a dataset. Then i try to test this model to classify an external data set but it does not work properly because the code is not properly made , the code is below , could you help me in that :
clc; clear; close all; %Read The data [x1,TXT,RAW]=xlsread('ALL2.xlsx','lnRe'); [t1,TXT2,RAW2]=xlsread('ALL2.xlsx','OUT2');
x=x1';
t=t1';
% Build the model
net= patternnet ([100]);
% net.divideParam.trainRatio = 70/100;
% net.divideParam.valRatio = 15/100;
% net.divideParam.testRatio = 15/100;
% view(net)
net=init(net);
[net,tr] = train(net,x,t);
% Test the Network [x2,TXT3,RAW3]=xlsread('expsettest.xlsx','Ln(Re)'); [t2,TXT4,RAW4]=xlsread('expsettest.xlsx','out-test'); xt=x2'; tt=t2'; outputs = net( xt); errors = gsubtract(tt,outputs); performance = perform(net,tt,outputs)
figure, plotconfusion(tt,outputs)
0 comentarios
Respuesta aceptada
Greg Heath
el 20 de Sept. de 2015
100 hidden nodes appears to be a ridiculous number.
Why don't you start by just using all defaults.
help patternnet
doc patternnet
Then Search NEWSGROUP and ANSWERS using
greg patternnet
Hope this helps.
Thank you for formally accepting my answer
Greg
2 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Sequence and Numeric Feature Data Workflows en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!