Does anyone know how to figure out a workaround to avoid computing overflow/underflow/NaN/inf in this algorithm?
5 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Eric Diaz
el 15 de Nov. de 2015
Comentada: Eric Diaz
el 22 de Nov. de 2015
M14 = Signal.^14;
M12 = Signal.^12 ; M10 = Signal.^10;
M8 = Signal.^8 ; M6 = Signal.^6;
M4 = Signal.^4 ; M2 = Signal.^2;
S14 = Sigma.^14;
S12 = Sigma.^12 ; S10 = Sigma.^10;
S8 = Sigma.^8 ; S6 = Sigma.^6;
S4 = Sigma.^4 ; S2 = Sigma.^2;
nPiD2 = pi/2;
sqrtNpiD2 = sqrt(nPiD2);
n1D2 = 1/2;
n1D4 = 1/4;
n1DM10Sig = 1./(M10.*Sigma);
n1DM12Sig = 1./(M12.*Sigma);
alpha = M2./S2;
nAlphaD4 = n1D4*alpha;
FirstTerm = n1DM10Sig.*(M12 + 9*M10.*S2 - 15*M8.*S4 + 90*M6.*S6 - 495*M4.*S8 + 2160*M2.*S10 - 5760*S12).*besseli(0,nAlphaD4);
SecondTerm = n1DM12Sig.*(M14 + 7*M12.*S2 - 27*M10.*S4 + 150*M8.*S6 - 855*M6.*S8 + 4320*M4.*S10 - 17280*M2.*S12 + 46080*S14).*besseli(1,nAlphaD4);
biasedSignal = n1D2*sqrtNpiD2*exp(-nAlphaD4).*(FirstTerm + SecondTerm);
As you can imagine, because of the powers of these numbers being rather high, I am running into issues with computing inf/NaN where I don't actually want it. Is there a way to avoid computing these values?
0 comentarios
Respuesta aceptada
Jan
el 15 de Nov. de 2015
You can calculate the logarithm of all equations to keep the ranges of the values inside the limits. Replace besseli by its taylor series to build its log.
2 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Loops and Conditional Statements en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!