NARXNET to predict the time series

2 visualizaciones (últimos 30 días)
Lilya
Lilya el 25 de Nov. de 2015
Comentada: Greg Heath el 1 de Dic. de 2015
Hi Neural Network users,
I had written a code to predict the last week of my data set, the result is as shown in the plot below Please let me know where I made a mistake :(
clear;
%%1. Importing data
load ('Metdata.mat'); % Import file
load('Rdate.mat');
Metdata(:,1)=[];
Rdate(:,1)=[];
Inputs = Metdata'; %Convert to row
Target = Rdate'; %Convert to row
X = con2seq(Inputs); %Convert to cell
T = con2seq(Target); %Convert to cell
%%2. Data preparation
N = 168; % Multi-step ahead prediction
% Input and target series are divided in two groups of data:
% 1st group: used to train the network
inputSeries = X(1:end-N);
targetSeries = T(1:end-N);
% 2nd group: this is the new data used for simulation. inputSeriesVal will
% be used for predicting new targets. targetSeriesVal will be used for
% network validation after prediction
inputSeriesVal = X(end-N+1:end);
targetSeriesVal = T(end-N+1:end);
%%3. Network Architecture
delay = 2;
neuronsHiddenLayer = 15;
% Create a Nonlinear Autoregressive Network with External Input
% net = narxnet(inputDelays,feedbackDelays,hiddenLayerSize);
net = narxnet(1:delay,1:delay,neuronsHiddenLayer);
%%4. Training the network
[Xs,Xi,Ai,Ts] = preparets(net,inputSeries,{},targetSeries);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi,Ai);
% Performance for the series-parallel implementation, only
% one-step-ahead prediction
perf = perform(net,Ts,Y);
%%5. Multi-step ahead prediction
[Xs1,Xio,Aio] = preparets(net,inputSeries(1:end-delay),{},targetSeries(1:end-delay));
[Y1,Xfo,Afo] = net(Xs1,Xio,Aio);
[netc,Xic,Aic] = closeloop(net,Xfo,Afo);
[yPred,Xfc,Afc] = netc(inputSeriesVal,Xic,Aic);
multiStepPerformance = perform(net,yPred,targetSeriesVal);
view(netc)
figure;
plot([cell2mat(targetSeries),nan(1,N);
nan(1,length(targetSeries)),cell2mat(yPred);
nan(1,length(targetSeries)),cell2mat(targetSeriesVal)]')
legend('Original Targets','Network Predictions','Expected Outputs')

Respuesta aceptada

Greg Heath
Greg Heath el 27 de Nov. de 2015
Your complete data set does not appear to be stationary (e.g., constant mean, variance and correlations.
Divide the data into stationary subsets and design a model for each.
Hope this helps.
Greg
  4 comentarios
Lilya
Lilya el 29 de Nov. de 2015
Editada: Lilya el 30 de Nov. de 2015
ok, I will take your advice in mind. I have a question in the choosing of the number of hidden layer neurons when I change it to 50 neurons the plot looks as shown in attachment the figure looks better. And excuse me Dr. What do you mean by "5 separate models"? Is it by taking each input individually? Finally, is it necessary for normalizing data with (mapstd)?
Thank you
Greg Heath
Greg Heath el 1 de Dic. de 2015
Look at the plot! There are 5 separate regions, each with a separate set of summary statistics.
MAPSTD is not necessary. I prefer using the function ZSCORE before training to detect outliers for removal or modification. Then I use the default MAPMINMAX. An alternative would be to replace the the default with MAPSTD or '' (i.e., nothing).
You can refer to any of my zillions of postings in the NEWSGROUP or ANSWERS.
Greg

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Predictive Maintenance Toolbox en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by