Help plotting FFT from column vector with real and imaginary parts.

12 visualizaciones (últimos 30 días)
Hello, I'm attempting to plot the fft from the data taken from an oscilloscope and saved in Excel.
I've saved the data in matlab as a column vector with 200 data points of real and imaginary parts, called 'data', and I'm trying to get an accurate FFT plot. The plot that comes out doesn't look like the FFT spikes I'm expecting; rather its just a strange squiggle. I was wondering if anybody has any insight into what I'm doing wrong. My code is:
>> freq = fft (data)
freq =
-1.2128 + 0.0000i
2.1644 + 5.0673i
0.2578 + 1.0098i
0.0654 + 0.6253i
0.0270 + 0.4352i
0.0174 + 0.3877i
0.0068 + 0.3035i
-0.0008 + 0.2554i
-0.0048 + 0.2123i
-0.0101 + 0.1999i
0.0021 + 0.1944i
-0.0191 + 0.1507i
-0.0352 + 0.1421i
-0.0275 + 0.1331i
-0.0235 + 0.1287i
-0.0528 + 0.1290i
-0.0094 + 0.0996i
-0.0388 + 0.0833i
-0.0216 + 0.0892i
-0.0338 + 0.0902i
-0.0159 + 0.0837i
-0.0284 + 0.0609i
-0.0360 + 0.0834i
-0.0358 + 0.0962i
-0.0206 + 0.0791i
-0.0261 + 0.0670i
-0.0314 + 0.0603i
-0.0204 + 0.0536i
-0.0122 + 0.0511i
-0.0247 + 0.0404i
-0.0297 + 0.0425i
-0.0275 + 0.0417i
-0.0325 + 0.0510i
-0.0250 + 0.0568i
-0.0192 + 0.0415i
-0.0296 + 0.0531i
-0.0199 + 0.0475i
-0.0255 + 0.0470i
-0.0340 + 0.0470i
-0.0225 + 0.0298i
-0.0254 + 0.0361i
-0.0179 + 0.0413i
-0.0312 + 0.0294i
-0.0364 + 0.0124i
-0.0237 + 0.0331i
-0.0264 + 0.0207i
-0.0172 + 0.0344i
-0.0181 + 0.0243i
-0.0486 + 0.0343i
-0.0056 + 0.0411i
-0.0436 + 0.0328i
-0.0230 + 0.0237i
-0.0372 + 0.0243i
-0.0291 + 0.0368i
-0.0212 + 0.0038i
-0.0266 + 0.0212i
-0.0309 + 0.0148i
-0.0411 + 0.0130i
-0.0279 + 0.0245i
-0.0151 + 0.0134i
-0.0347 + 0.0158i
-0.0324 + 0.0211i
-0.0287 + 0.0202i
-0.0305 + 0.0307i
-0.0145 + 0.0180i
-0.0227 + 0.0106i
-0.0480 + 0.0169i
-0.0270 + 0.0098i
-0.0301 + 0.0193i
-0.0271 + 0.0160i
-0.0410 + 0.0047i
-0.0239 + 0.0182i
-0.0198 + 0.0074i
-0.0419 + 0.0206i
-0.0228 + 0.0139i
-0.0150 + 0.0014i
-0.0281 + 0.0141i
-0.0280 + 0.0145i
-0.0460 + 0.0218i
-0.0194 + 0.0152i
-0.0303 - 0.0020i
-0.0215 + 0.0226i
-0.0372 - 0.0002i
-0.0243 + 0.0146i
-0.0262 + 0.0152i
-0.0350 + 0.0149i
-0.0252 + 0.0092i
-0.0154 + 0.0027i
-0.0391 - 0.0037i
-0.0301 + 0.0099i
-0.0439 - 0.0088i
-0.0103 + 0.0423i
-0.0094 - 0.0096i
-0.0434 + 0.0049i
-0.0310 + 0.0006i
-0.0493 + 0.0002i
0.0009 + 0.0156i
-0.0324 - 0.0052i
-0.0360 + 0.0146i
-0.0138 - 0.0139i
-0.0548 + 0.0000i
-0.0138 + 0.0139i
-0.0360 - 0.0146i
-0.0324 + 0.0052i
0.0009 - 0.0156i
-0.0493 - 0.0002i
-0.0310 - 0.0006i
-0.0434 - 0.0049i
-0.0094 + 0.0096i
-0.0103 - 0.0423i
-0.0439 + 0.0088i
-0.0301 - 0.0099i
-0.0391 + 0.0037i
-0.0154 - 0.0027i
-0.0252 - 0.0092i
-0.0350 - 0.0149i
-0.0262 - 0.0152i
-0.0243 - 0.0146i
-0.0372 + 0.0002i
-0.0215 - 0.0226i
-0.0303 + 0.0020i
-0.0194 - 0.0152i
-0.0460 - 0.0218i
-0.0280 - 0.0145i
-0.0281 - 0.0141i
-0.0150 - 0.0014i
-0.0228 - 0.0139i
-0.0419 - 0.0206i
-0.0198 - 0.0074i
-0.0239 - 0.0182i
-0.0410 - 0.0047i
-0.0271 - 0.0160i
-0.0301 - 0.0193i
-0.0270 - 0.0098i
-0.0480 - 0.0169i
-0.0227 - 0.0106i
-0.0145 - 0.0180i
-0.0305 - 0.0307i
-0.0287 - 0.0202i
-0.0324 - 0.0211i
-0.0347 - 0.0158i
-0.0151 - 0.0134i
-0.0279 - 0.0245i
-0.0411 - 0.0130i
-0.0309 - 0.0148i
-0.0266 - 0.0212i
-0.0212 - 0.0038i
-0.0291 - 0.0368i
-0.0372 - 0.0243i
-0.0230 - 0.0237i
-0.0436 - 0.0328i
-0.0056 - 0.0411i
-0.0486 - 0.0343i
-0.0181 - 0.0243i
-0.0172 - 0.0344i
-0.0264 - 0.0207i
-0.0237 - 0.0331i
-0.0364 - 0.0124i
-0.0312 - 0.0294i
-0.0179 - 0.0413i
-0.0254 - 0.0361i
-0.0225 - 0.0298i
-0.0340 - 0.0470i
-0.0255 - 0.0470i
-0.0199 - 0.0475i
-0.0296 - 0.0531i
-0.0192 - 0.0415i
-0.0250 - 0.0568i
-0.0325 - 0.0510i
-0.0275 - 0.0417i
-0.0297 - 0.0425i
-0.0247 - 0.0404i
-0.0122 - 0.0511i
-0.0204 - 0.0536i
-0.0314 - 0.0603i
-0.0261 - 0.0670i
-0.0206 - 0.0791i
-0.0358 - 0.0962i
-0.0360 - 0.0834i
-0.0284 - 0.0609i
-0.0159 - 0.0837i
-0.0338 - 0.0902i
-0.0216 - 0.0892i
-0.0388 - 0.0833i
-0.0094 - 0.0996i
-0.0528 - 0.1290i
-0.0235 - 0.1287i
-0.0275 - 0.1331i
-0.0352 - 0.1421i
-0.0191 - 0.1507i
0.0021 - 0.1944i
-0.0101 - 0.1999i
-0.0048 - 0.2123i
-0.0008 - 0.2554i
0.0068 - 0.3035i
0.0174 - 0.3877i
0.0270 - 0.4352i
0.0654 - 0.6253i
0.2578 - 1.0098i
2.1644 - 5.0673i
>> plot (freq)
Any help would be appreciated.

Respuesta aceptada

Rick Rosson
Rick Rosson el 1 de Dic. de 2015
Editada: Rick Rosson el 1 de Dic. de 2015
N = length(data);
freq = fftshift(fft(data))/N;
plot(abs(freq));

Más respuestas (1)

Robert Evans
Robert Evans el 1 de Dic. de 2015
Thank you very much.

Categorías

Más información sobre Fourier Analysis and Filtering en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by