How to apply PCA correctly?

311 visualizaciones (últimos 30 días)
Sepp
Sepp el 12 de Dic. de 2015
Comentada: the cyclist el 25 de Jun. de 2024
Hello
I'm currently struggling with PCA and Matlab. Let's say we have a data matrix X and a response y (classification task). X consists of 12 rows and 4 columns. The rows are the data points, the columns are the predictors (features).
Now, I can do PCA with the following command:
[coeff, score] = pca(X);
As I understood from the matlab documentation, coeff contains the loadings and score contains the principal components in the columns. That mean first column of score contains the first principal component (associated with the highest variance) and the first column of coeff contains the loadings for the first principal component.
Is this correct?
But if this is correct, why is then X * coeff not equal to score?
  1 comentario
DrJ
DrJ el 11 de Dic. de 2019
Editada: DrJ el 11 de Dic. de 2019
Sepp @Sepp
your doubt can be clarified by this tutorial (eventhough in another program context) .. specially after 5' in https://www.youtube.com/watch?v=eJ08Gdl5LH0
the cliclist
fabulous and generous explanation

Iniciar sesión para comentar.

Respuesta aceptada

the cyclist
the cyclist el 12 de Dic. de 2015
Editada: the cyclist el 25 de Jun. de 2024
==============================================================================
EDIT: I recommend looking at my answer to this other question for a more detailed discussion of topics mentioned here.
==============================================================================
Maybe this script will help.
rng 'default'
M = 7; % Number of observations
N = 5; % Number of variables observed
X = rand(M,N);
% De-mean
X = bsxfun(@minus,X,mean(X));
% Do the PCA
[coeff,score,latent] = pca(X);
% Calculate eigenvalues and eigenvectors of the covariance matrix
covarianceMatrix = cov(X);
[V,D] = eig(covarianceMatrix);
% "coeff" are the principal component vectors.
% These are the eigenvectors of the covariance matrix.
% Compare the columns of coeff and V.
% (Note that the columns are not necessarily in the same *order*,
% and they might be slightly different from each other
% due to floating-point error.)
coeff
V
% Multiply the original data by the principal component vectors
% to get the projections of the original data on the
% principal component vector space. This is also the output "score".
% Compare ...
dataInPrincipalComponentSpace = X*coeff
score
% The columns of X*coeff are orthogonal to each other. This is shown with ...
corrcoef(dataInPrincipalComponentSpace)
% The variances of these vectors are the eigenvalues of the covariance matrix, and are also the output "latent". Compare
% these three outputs
var(dataInPrincipalComponentSpace)'
latent
sort(diag(D),'descend')
  17 comentarios
evelyn
evelyn el 21 de Jun. de 2024
Movida: the cyclist el 25 de Jun. de 2024
appreciate the explanation.
Has anyone try when data is complex-value number.
When I generate complex-value number data, the result is equite different when using 'pca function' directly and using eigenvectors of covariance matrix. Could anyone help me! code is shown below.
M = 13; % Number of observations
N = 4; % Number of variables observed
PCA_component_Num = 4;
data_matrix = rand(M,N) + 1i * randn(M,N);
X = data_matrix;
% De-mean
centredX = bsxfun(@minus,X,mean(X))
centredX =
0.4454 + 0.8543i 0.4902 - 0.1472i 0.4357 - 1.3816i 0.2678 - 2.3164i -0.4331 + 0.5001i -0.2441 + 2.0524i 0.4457 + 1.2104i -0.4510 + 0.0638i -0.3329 + 0.1551i -0.1774 - 1.1576i -0.1812 - 1.3566i 0.1672 - 0.9104i -0.2118 + 0.1088i 0.1244 - 1.7458i 0.1688 - 0.8478i 0.2788 + 0.8375i -0.3907 - 2.8987i -0.2099 - 0.6153i -0.2118 + 0.8387i -0.4950 + 0.0564i 0.4255 + 0.4438i 0.5516 + 0.2240i -0.1030 + 0.2717i 0.2007 + 0.4471i 0.1752 + 0.9419i -0.2258 + 0.7153i -0.2437 + 0.6895i 0.2486 - 0.1282i -0.2496 + 0.0594i 0.1494 + 0.4663i -0.3012 - 0.2444i 0.2748 + 0.0877i -0.1979 + 0.7959i 0.1506 - 0.6308i 0.1326 + 0.2832i -0.3350 - 0.3773i 0.0798 - 0.9431i -0.3518 - 0.1190i -0.1554 - 0.6269i 0.1827 + 0.5595i 0.3772 - 0.3679i -0.0558 + 0.2619i 0.3242 - 0.4218i -0.1654 + 0.9524i 0.2377 + 1.0162i 0.1443 - 0.2092i -0.0725 + 1.0026i -0.2486 + 1.1169i 0.0752 - 0.6657i -0.3458 + 0.9049i -0.2382 + 0.5830i 0.0743 - 0.3890i
%% PCA using Matlab function directly
[coeff,score,latent] = pca(centredX);
% latent is eigenvalues of the covariance matrix of X.
% "coeff" are the principal component vectors.
dataInPrincipalComponentSpace = centredX * coeff;
% Multiply the original data by the principal component vectors
% to get the projections of the original data on the
% principal component vector space. This is also the output "score".
% Compare ...
dataInPrincipalComponentSpace
dataInPrincipalComponentSpace =
-0.0812 + 2.1154i -0.4314 + 1.4340i -0.8775 - 1.0683i 0.3017 - 0.0138i -1.5047 - 1.6008i 0.9383 + 0.5912i -0.3305 - 0.4482i 0.3796 - 0.2641i 0.9170 + 1.1712i -1.2558 + 0.5356i -0.3824 + 0.0542i 0.0834 - 0.0594i 0.5283 + 0.9448i -1.1058 - 0.7001i 0.4632 + 1.2408i 0.0014 + 0.0869i 1.6497 - 1.1864i -0.0012 - 2.0990i -0.6828 - 0.7879i 0.1430 + 0.5765i -0.5577 + 0.1855i 0.5324 - 0.0464i 0.3590 + 0.2608i -0.4757 + 0.0544i -0.7034 - 0.4397i 0.4606 + 0.9445i 0.4283 - 0.1126i -0.1720 + 0.2747i -0.2168 - 0.1500i -0.1541 + 0.1499i -0.0096 - 0.1599i -0.4818 - 0.4071i -0.1823 + 0.3246i -0.1215 + 0.5045i -0.3390 + 0.5827i 0.2223 + 0.7306i 0.7351 - 0.1045i -0.2962 - 0.7219i 0.3674 - 0.1313i -0.0440 - 0.6950i -0.0031 - 0.0195i 0.3168 - 0.6788i 0.4030 + 0.2911i 0.2171 - 0.8432i -0.6700 - 0.3994i 0.6606 + 0.0546i 0.6598 + 1.2832i -0.1326 + 0.5711i 0.0892 - 0.8413i 0.4573 + 0.0319i -0.0589 - 1.0047i -0.0424 - 0.0116i
score
score =
-0.0812 + 2.1154i -0.4314 + 1.4340i -0.8775 - 1.0683i 0.3017 - 0.0138i -1.5047 - 1.6008i 0.9383 + 0.5912i -0.3305 - 0.4482i 0.3796 - 0.2641i 0.9170 + 1.1712i -1.2558 + 0.5356i -0.3824 + 0.0542i 0.0834 - 0.0594i 0.5283 + 0.9448i -1.1058 - 0.7001i 0.4632 + 1.2408i 0.0014 + 0.0869i 1.6497 - 1.1864i -0.0012 - 2.0990i -0.6828 - 0.7879i 0.1430 + 0.5765i -0.5577 + 0.1855i 0.5324 - 0.0464i 0.3590 + 0.2608i -0.4757 + 0.0544i -0.7034 - 0.4397i 0.4606 + 0.9445i 0.4283 - 0.1126i -0.1720 + 0.2747i -0.2168 - 0.1500i -0.1541 + 0.1499i -0.0096 - 0.1599i -0.4818 - 0.4071i -0.1823 + 0.3246i -0.1215 + 0.5045i -0.3390 + 0.5827i 0.2223 + 0.7306i 0.7351 - 0.1045i -0.2962 - 0.7219i 0.3674 - 0.1313i -0.0440 - 0.6950i -0.0031 - 0.0195i 0.3168 - 0.6788i 0.4030 + 0.2911i 0.2171 - 0.8432i -0.6700 - 0.3994i 0.6606 + 0.0546i 0.6598 + 1.2832i -0.1326 + 0.5711i 0.0892 - 0.8413i 0.4573 + 0.0319i -0.0589 - 1.0047i -0.0424 - 0.0116i
% The columns of X*coeff are orthogonal to each other. This is shown with ...
corrcoef(dataInPrincipalComponentSpace)
ans =
1.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i -0.0000 + 0.0000i 0.0000 + 0.0000i 1.0000 + 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 + 0.0000i 1.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 + 0.0000i 0.0000 - 0.0000i 1.0000 + 0.0000i
%% eigenvector
C = cov(centredX);
[W, Lambda] = eig(C);
% Compare the columns of coeff and V.
% (Note that the columns are not necessarily in the same *order*,
% and they might be *lightly different from each other
coeff
coeff =
0.2054 + 0.4621i 0.7054 + 0.0000i 0.4618 - 0.1538i 0.0985 - 0.0007i -0.3912 + 0.4334i 0.2040 - 0.3509i -0.4306 + 0.0752i -0.5420 + 0.0973i -0.5084 + 0.2284i -0.0985 - 0.3354i -0.0393 - 0.0839i 0.7473 - 0.0104i -0.2695 + 0.1417i -0.4587 - 0.0712i 0.6008 - 0.4500i -0.3362 + 0.1240i
W
W =
-0.0926 - 0.0335i 0.4618 + 0.1538i 0.6971 - 0.1082i 0.0333 - 0.5046i 0.5422 + 0.0964i -0.3897 - 0.1980i 0.1478 - 0.3780i 0.5480 - 0.2016i -0.7047 - 0.2490i 0.0188 - 0.0907i -0.1487 - 0.3163i 0.5563 + 0.0344i 0.3583 + 0.0000i 0.7506 + 0.0000i -0.4642 + 0.0000i 0.3044 + 0.0000i
% The variances of these vectors are the eigenvalues of the covariance matrix, and are also the output "latent". Compare
% these three outputs
var(dataInPrincipalComponentSpace)'
ans = 4x1
1.6616 1.2483 0.7982 0.2983
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
latent
latent = 4x1
1.6616 1.2483 0.7982 0.2983
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
sort(diag(Lambda),'descend')
ans = 4x1
1.6616 1.2483 0.7982 0.2983
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
ev = (diag(Lambda))'; % 提取特征值
ev = ev(:, end:-1:1); % eig计算出的特征值是升序的,这里手动倒序(W同理)
W = W(:, end:-1:1);
sum(W.*W, 1) % 可以验证每个特征向量各元素的平方和均为1
ans =
0.4070 - 0.2162i 0.4907 - 0.1684i 0.8579 + 0.2929i 0.8552 + 0.4616i
Wr = W(:, 1:4); % 提取前两个主成分的特征向量
% compare Tr with dataInPrincipalComponentSpace
% both PCA component
Tr = centredX * Wr % 新坐标空间的数据点
Tr =
1.0564 - 1.8346i -0.2064 + 1.4831i -0.0619 - 1.3811i -0.2878 - 0.0915i 0.5868 + 2.1172i 1.0178 + 0.4404i 0.0042 - 0.5569i -0.4476 + 0.1164i -0.2665 - 1.4634i -1.1589 + 0.7218i -0.3386 - 0.1858i -0.0988 + 0.0269i -0.0279 - 1.0821i -1.2001 - 0.5223i -0.3731 + 1.2708i 0.0288 - 0.0820i -2.0123 + 0.2823i -0.3230 - 2.0740i -0.0742 - 1.0399i 0.0654 - 0.5903i 0.5800 + 0.0954i 0.5190 - 0.1275i 0.1310 + 0.4239i 0.4651 + 0.1137i 0.4180 + 0.7165i 0.6000 + 0.8627i 0.4103 + 0.1667i 0.2564 - 0.1981i 0.1221 + 0.2337i -0.1293 + 0.1718i 0.0882 - 0.1337i 0.3111 + 0.5487i 0.3125 - 0.2025i -0.0427 + 0.5171i -0.6206 + 0.2632i 0.0444 - 0.7624i -0.6993 - 0.2497i -0.4034 - 0.6680i 0.3728 + 0.1151i -0.1993 + 0.6672i -0.0064 + 0.0187i 0.2090 - 0.7193i 0.1481 + 0.4746i -0.4956 + 0.7159i 0.4071 + 0.6654i 0.6611 - 0.0474i -0.2412 + 1.4226i 0.3221 - 0.4899i -0.4705 + 0.7031i 0.4568 - 0.0386i 0.5552 - 0.8395i 0.0357 + 0.0255i
%% SVD
[U, S, V] = svd(centredX);
PCA_result = centredX* V(:,1:PCA_component_Num)
PCA_result =
-1.9001 - 0.9334i -0.4314 + 1.4340i 0.4951 + 1.2908i 0.3018 - 0.0117i 2.0740 - 0.7248i 0.9383 + 0.5912i 0.1720 + 0.5297i 0.3814 - 0.2615i -1.4427 + 0.3622i -1.2558 + 0.5356i 0.3799 + 0.0694i 0.0838 - 0.0589i -1.0779 + 0.0990i -1.1058 - 0.7001i -0.0475 - 1.3236i 0.0008 + 0.0870i 0.4141 + 1.9894i -0.0012 - 2.0990i 0.3989 + 0.9632i 0.1390 + 0.5774i 0.0570 - 0.5850i 0.5324 - 0.0464i -0.2582 - 0.3608i -0.4760 + 0.0511i 0.6875 - 0.4642i 0.4606 + 0.9445i -0.4419 - 0.0285i -0.1739 + 0.2735i 0.2252 - 0.1372i -0.1541 + 0.1499i -0.0414 + 0.1547i -0.4790 - 0.4104i -0.2226 - 0.2985i -0.1215 + 0.5045i 0.5057 - 0.4458i 0.2172 + 0.7321i -0.2031 + 0.7142i -0.2962 - 0.7219i -0.3900 + 0.0085i -0.0392 - 0.6952i 0.0190 + 0.0051i 0.3168 - 0.6788i -0.2904 - 0.4036i 0.2229 - 0.8417i 0.6372 - 0.4500i 0.6606 + 0.0546i -0.2206 - 1.4259i -0.1365 + 0.5701i 0.7326 + 0.4233i 0.4573 + 0.0319i -0.2615 + 0.9718i -0.0423 - 0.0119i
'PCA_result', 'dataInPrincipalComponentSpace' and 'Tr' are different from each other.(they are same with real-value data)
Besides, I see someone using 'centredX* V(:,1:PCA_component_Num)' while someone using 'U(:,rk)*S(rk,:)*V'' to get principle component. Which one is correct?
the cyclist
the cyclist el 25 de Jun. de 2024
Short answer
I don't know.
Longer answer
I've never done PCA on complex numbers, and I've never even heard of someone doing PCA on complex numbers. (I didn't find anything on a quick web search, and ChatGPT seems to hallucinate on some of the questions I've asked.)
At first, I thought the issue with your version might be due to the fact that you did not use all the principal components in some of the computation. I also thought there might be severe numerical instability because of cancelation in the random input matrix. But, I don't think either of those explanations are correct. (I've tried other input matrices, and get the same issues.)
I definitely don't understand why one would get different results from SVD, eig(cov matrix), and PCA.
I think this is worth crafting a smaller example with non-random input, and posting a brand-new question.

Iniciar sesión para comentar.

Más respuestas (2)

Yaser Khojah
Yaser Khojah el 17 de Abr. de 2019
Dear the cyclist, thanks for showing this example. I have a question regarding to the order of the COEFF since they are different than the V. Is there anyway to see which order of these columns? In another word, what are the variables of each column?
  8 comentarios
Yuan Luo
Yuan Luo el 8 de Nov. de 2020
why X need to be de-meaned? since pca by defualt will center the data.
the cyclist
the cyclist el 26 de Dic. de 2020
Sorry it took me a while to see this question.
If you do
[coeff,score] = pca(X);
it is true that pca() will internally de-mean the data. So, score is derived from de-meaned data.
But it does not mean that X itself [outside of pca()] has been de-meaned. So, if you are trying to re-create what happens inside pca(), you need to manually de-mean X first.

Iniciar sesión para comentar.


Greg Heath
Greg Heath el 13 de Dic. de 2015
Hope this helps.
Thank you for formally accepting my answer
Greg

Categorías

Más información sobre Dimensionality Reduction and Feature Extraction en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by