Fast fourier transform (FFT) data points
6 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Ken W
el 16 de Dic. de 2015
Comentada: Walter Roberson
el 16 de Dic. de 2015
Dear All,
I have a set of data with length of 17520 data points. I wish to know is that necessary to follow the rule of 2^n data points (2^14 = 16384). I found that FFT can also transform all the 17520 data points. What are the effects if i transform all the data points? The transform of all data points is equivalent to 2^14 (16384) data points?
I have another data set which not equally spaced. Can FFT applied to this data? Because FFT is applied to equally spaced data.
Please advise me.
Thank you.
0 comentarios
Respuesta aceptada
Walter Roberson
el 16 de Dic. de 2015
There is no rule of 2^n data points. Certain computations can be faster if you have 2^n data points, but any number of data points can be used in fft(). The effect of using fft(YourArray,16384) when length(YourArray) > 16384 is the same as using fft(YourArray(1:16384)) -- that is, the remaining data is ignored, so you can get a higher resolution by using fft() of all of the data.
For the non-uniform case, see http://www.mathworks.com/matlabcentral/answers/260083-frequency-to-time-domain-conversion#answer_203071
2 comentarios
Walter Roberson
el 16 de Dic. de 2015
If there is just the occasional missing value you might want to interpolate it; otherwise you need one of the non-uniform techniques I link to above.
Más respuestas (0)
Ver también
Categorías
Más información sobre Fourier Analysis and Filtering en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!