Sinusoidal steady state response to sinusoidal input

43 visualizaciones (últimos 30 días)
tsstac1
tsstac1 el 20 de Feb. de 2016
Editada: Abdulhakim el 11 de Nov. de 2023
So I have a transfer function of a feedback system,
>> yd
yd =
s^3 + 202 s^2 + 401 s + 200
------------------------------
s^3 + 202 s^2 + 20401 s + 1e06
Of which I'd like to look at the sinusoidal steady state response to the disturbance d(t) = sin(130t).
How do you do this in matlab? I'm well aware of how to get a step or impulse response, but not a sinusoidal response.

Respuesta aceptada

Star Strider
Star Strider el 20 de Feb. de 2016
Use the lsim function:
% num = s^3 + 202 s^2 + 401 s + 200
% den = s^3 + 202 s^2 + 20401 s + 1e06
n = [1 202 401 200];
d = [1 202 20401 1E+6];
sys = tf(n,d); % Define LTI System
t = linspace(0, 100, 1000); % Time Vector
u = sin(130*t); % Forcing Function
y = lsim(sys, u, t); % Calculate System Response
figure(1)
plot(t, y)
grid
  4 comentarios
Max Agarwal
Max Agarwal el 25 de Sept. de 2022
here 130 is omega??
Star Strider
Star Strider el 25 de Sept. de 2022
It is the frequency in radians/time_unit.

Iniciar sesión para comentar.

Más respuestas (1)

Abdulhakim
Abdulhakim el 11 de Nov. de 2023
Editada: Abdulhakim el 11 de Nov. de 2023
If you know the Laplace transform of the input you can exploit the fact that the impulse function in the s-domain is equal to 1. Here is how:
For a system with input and output
Since
impulse(G*R) is actually the output in the time domain .
The laplace transform for
num = [1 202 401 200];
den = [1 202 20401 10^6];
G = tf(num,den)
SIN = tf(130,[1 0 130^2]);
C = G*SIN
impulse(C)

Categorías

Más información sobre MATLAB en Help Center y File Exchange.

Etiquetas

Productos

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by