Simple question: How to find the 'x' at a certain value of y(x) equation?

29 visualizaciones (últimos 30 días)
This may be a simple question. But let's assume I have one ugly equation:
x = [0:10];
y = @(x) x.^2.*12./23./23.9.*log(x).^2
How do I find the value of 'x' where y = 30?
Thanks!
  4 comentarios
Dyuman Joshi
Dyuman Joshi el 11 de Oct. de 2023
Movida: Sam Chak el 11 de Oct. de 2023
Did you tried the approach that is mentioned in the accepted answer?
Sam Chak
Sam Chak el 11 de Oct. de 2023
@Ceylin, Which intersection do you want to solve for x?
syms f(x)
f(x) = sin(x);
fplot(f, [-2*pi, 2*pi]), grid on % draw left side of Eqn
yline(0.2, 'r-') % draw right side of Eqn
xlabel('x')
legend('sin(x)', '0.2')

Iniciar sesión para comentar.

Respuesta aceptada

Star Strider
Star Strider el 28 de Feb. de 2016
This works:
x_for_y30 = fzero(@(x)y(x)-30, 50)
x_for_y30 =
14.0341
  8 comentarios
Thanh Thuy Duyen Nguyen
Thanh Thuy Duyen Nguyen el 17 de Abr. de 2024
If I have x and want y then how could I compute that?
Star Strider
Star Strider el 17 de Abr. de 2024
Actually there is an additional way of solving this, using interp1, especially if the actual function is not available —
x = [0:15]+eps;
y = @(x) x.^2.*12./23./23.9.*log(x).^2
y = function_handle with value:
@(x)x.^2.*12./23./23.9.*log(x).^2
yq = 30;
x_for_y30 = interp1(y(x), x, yq) % Get 'x' For Specific 'y'
x_for_y30 = 14.0322
y_for_x2pi = interp1(x, y(x), 2*pi) % Get 'y' For Specific 'x'
y_for_x2pi = 2.9555
figure
plot(x, y(x))
grid
hold on
plot(x_for_y30, 30, 'ms', 'MarkerFaceColor','m')
plot(2*pi, y_for_x2pi, 'cs', 'MarkerFaceColor','c')
hold off
xline(2*pi,'--k', '2\pi')
yline(y_for_x2pi, '--k', sprintf('y=%.2f for x=2\\pi',y_for_x2pi))
xline(x_for_y30, '--k', sprintf('x=%.2f for y=30',x_for_y30))
.

Iniciar sesión para comentar.

Más respuestas (1)

John BG
John BG el 28 de Feb. de 2016
Editada: John BG el 29 de Feb. de 2016
Alpha
If you plot the following
x=[-100:.1:100]
f = @(x) x.^2.*12./23./23.9.*log(x).^2
y=f(x)
plot(x,y)
grid on
place the marker on the point that shows y=30 f(x) is not symmetric, it has 2 zeros, and f=30 on 2 places:
x01=14.04
x02=-29.5
if what you really mean is:
f2 = @(x) x.^2.*12./(23.*23.9).*log(abs(x)).^2
then the function is symmetric and there are 2 values of x that satisfy your question:
x01=14.04
x02=-14.04
Compare both functions and y=30
If you find this answer of any help solving this question, please click on the thumbs-up vote link
thanks in advance
John

Categorías

Más información sobre Function Creation en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by