Hi, my prob is find the most accurate 1st derivative of f(x)=exp(cos(x)) at x=1, with h=0.5,0.25,..,2^(-16). I calculate the 1st der. using 1st order central diff formula & trying to improve the accuracy using Richardson extrap. got incorrect result

1 visualización (últimos 30 días)
clear; clc; format shortG
f = @(x) exp(cos(x)); df = @(x) -exp(cos(x))*sin(x);
x = 1; Truef1 = df(x); A = [];
h = 1/2;
while (h >= 2^-16)
f1 = (f(x+h)-f(x-h))/(2*h);
A = [A; h f1];
h = h/2;
end
D(:,1) = A(:,2); E(:,1) = abs((Truef1-D(:,1))/Truef1);
for i = 1:16
for j = 2:i
D(i,j) = ((4^j)*D(i,j-1)-D(i-1,j-1))/(4^j-1);
E(i,j) = abs((Truef1-D(i,j))/Truef1);
end
end
disp(D); disp(E);
Order = (log(E(3,2))-log(E(2,2)))/(log(A(3,1))-log(A(2,1)))
loglog(A(:,1),E,'-');
  1 comentario
John D'Errico
John D'Errico el 9 de Mzo. de 2016
Editada: John D'Errico el 9 de Mzo. de 2016
Please learn to use the {} Code button when you post code. As you have posted it, this is unreadable.
Select the block of code, then click on the "{} Code" button. I'll fix it once for you.

Iniciar sesión para comentar.

Respuestas (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by