Undefined function or variable 'VanDerCorput'
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Gerenimo
el 27 de Mzo. de 2016
Comentada: Gerenimo
el 1 de Abr. de 2016
This is my script :
%Function computing the value at risk of a
%portfolio composed of two bonds.
NbTraj= 1000000; %Number of simulations.
p= 0.5; %Weight for each bond.
alpha= 0.99; %Confidence level
%Identification of our data file
fid=fopen('SpotRates.txt','rt');
%Reading of the data from file SpotRates.txt
Data=fscanf(fid, '%f %f %f %f %f %f %f %f %f');
%Closing of source file.
fclose(fid);
%Partition of data into date and different rates
M1=Data(1:9:size(Data)); %spot rate 1 month
M3=Data(2:9:size(Data)); %spot rate 3 months
M6=Data(3:9:size(Data)); %spot rate 6 months
Y1=Data(4:9:size(Data)); %spot rate 1 year
Y2=Data(5:9:size(Data)); %spot rate 2 years
Y3=Data(6:9:size(Data)); %spot rate 3 years
Y5=Data(7:9:size(Data)); %spot rate 5 years
Y10=Data(8:9:size(Data)); %spot rate 10 years
Y30=Data(9:9:size(Data)); %spot rate 30 years
%Matrix of rates
Data1=[M1,M3,M6,Y1,Y2,Y3,Y5,Y10,Y30];
%Initial rates
ActualRates=Data1(size(Data1,1),:);
%Normalization of rates
for i=1:9
Average(i)=mean(Data1(:,i));
Deviation(i)=std(Data1(:,i));
Data1(:,i)=(Data1(:,i)-Average(i))/Deviation(i);
end
%The standard deviation for a one month period.
%We want a value at risk for 10 days and we divide by
%sqrt(3) since 1 month = 3*10 days.
Deviation=Deviation/sqrt(3);
%Eigenvectors and eigenvalues of the covariance matrix
%Vector -Vi can also be returned by function
%eigs if Vi is an eigenvector.
[V,E]=eigs(cov(Data1),3);
%Components determination.
PC1=V(:,1);
PC2=V(:,2);
PC3=V(:,3);
%Graph of the principal components.
plot([1:1:9],sqrt(E(1,1))*PC1,'r',[1:1:9],sqrt(E(2,2))*PC2,'b',...
[1:1:9],sqrt(E(3,3))*PC3,'m');
Weight1=p;
Weight2=1-Weight1;
%Initial parameters
CouponRate1=0.06;
FaceValue1=1000;
CouponRate2=0.08;
FaceValue2=1000;
coupon1=CouponRate1*FaceValue1;
coupon2=CouponRate2*FaceValue2;
%Vectors for quasi random variables
u1=zeros(NbTraj,1);
u2=zeros(NbTraj,1);
%Simulation of quasi random numbers
for l=1:NbTraj
u1(l)=norminv(VanDerCorput(l,3));
u2(l)=norminv(VanDerCorput(l,5));
end
%Spot rates matrix
Rates=zeros(9,NbTraj);
%Loop generating the interest rates
for j=1:NbTraj
for i=1:9
%Computation of rates. We multiply by the sign of the first
%element of the components to fix them positively. This will allow
%us to replicate perfectly our results if needed.
Rates(i,j)=ActualRates(1,i)+...
Deviation(i)*(sqrt(E(1,1))*u1(j,1)*V(i,1)*sign(V(1,1))+...
sqrt(E(2,2))*u2(j,1)*V(i,2)*sign(V(1,2)));
end
end
%Spot rates initial values
M6=ActualRates(1,3); %spot rate 6 months
Y1=ActualRates(1,4) ; %spot rate 1 year
Y2=ActualRates(1,5); %spot rate 2 years
Y3=ActualRates(1,6); %spot rate 3 years
Y5=ActualRates(1,7); %spot rate 5 years
%Linear interpolation
Y1_5=(Y1+Y2)/2; %spot rate 1.5 years
Y2_5=(Y2+Y3)/2; %spot rate 2.5 years
Y3_5=(3*Y3+Y5)/4; %spot rate 3.5 years
Y4=(Y3+Y5)/2; %spot rate 4 years
Y4_5=(3*Y5+Y3)/4; %spot rate 4.5 years
%Determination of initial bonds' prices.
price1=(coupon1/2)/(1+(M6/100))^(1/2)+(coupon1/2)/(1+(Y1/100))^1+...
(coupon1/2)/(1+(Y1_5/100))^(3/2)+(coupon1/2)/(1+(Y2/100))^2+...
(FaceValue1+(coupon1/2))/(1+(Y2_5/100))^(5/2);
price2=(coupon2/2)/(1+(M6/100))^(1/2)+(coupon2/2)/(1+(Y1/100))^1+...
(coupon2/2)/(1+(Y1_5/100))^(3/2)+(coupon2/2)/(1+(Y2/100))^2+...
(coupon2/2)/(1+(Y2_5/100))^(5/2)+(coupon2/2)/(1+(Y3/100))^3+...
(coupon2/2)/(1+(Y3_5/100))^(7/2)+(coupon2/2)/(1+(Y4/100))^4+...
(coupon2/2)/(1+(Y4_5/100))^(9/2)+...
(FaceValue2+(coupon2/2))/(1+(Y5/100))^5;
%Portfolio's initial price.
InitialPrice=Weight1*price1+Weight2*price2;
%Loop computing the possible evolution of the portfolio's price.
for k=1:NbTraj
M6=Rates(3,k); %Spot rate 6 months
Y1=Rates(4,k); %Spot rate 1 year
Y2=Rates(5,k); %Spot rate 2 years
Y3=Rates(6,k); %Spot rate 3 years
Y5=Rates(7,k); %Spot rate 5 years
Y1_5=(Y1+Y2)/2; %Spot rate 1.5 years
Y2_5=(Y2+Y3)/2; %Spot rate 2.5 years
Y3_5=(3*Y3+Y5)/4; %Spot rate 3.5 years
Y4=(Y3+Y5)/2; %Spot rate 4 years
Y4_5=(3*Y5+Y3)/4; %Spot rate 4.5 years
%Valuation of two different bonds
price1=(coupon1/2)/(1+(M6/100))^(1/2)+(coupon1/2)/(1+(Y1/100))^1+...
(coupon1/2)/(1+(Y1_5/100))^(3/2)+(coupon1/2)/(1+(Y2/100))^2+...
(FaceValue1+(coupon1/2))/(1+(Y2_5/100))^(5/2);
price2=(coupon2/2)/(1+(M6/100))^(1/2)+(coupon2/2)/(1+(Y1/100))^1+...
(coupon2/2)/(1+(Y1_5/100))^(3/2)+(coupon2/2)/(1+(Y2/100))^2+...
(coupon2/2)/(1+(Y2_5/100))^(5/2)+(coupon2/2)/(1+(Y3/100))^3+...
(coupon2/2)/(1+(Y3_5/100))^(7/2)+(coupon2/2)/(1+(Y4/100))^4+...
(coupon2/2)/(1+(Y4_5/100))^(9/2)+...
(FaceValue2+(coupon2/2))/(1+(Y5/100))^5;
%Computation of the portfolio's price for this scenario
PortfolioPrice=Weight1*price1+Weight2*price2;
vectPrice(k,1)= PortfolioPrice;
end
%Sorting the prices and VaR computation.
vectPrice=sort(vectPrice);
VaR=(InitialPrice-vectPrice(floor(alpha/100*NbTraj)));
end
and then the result was : "Undefined function or variable 'VanDerCorput'" why?anyone help please
0 comentarios
Respuesta aceptada
Stephen23
el 27 de Mzo. de 2016
Editada: Stephen23
el 28 de Mzo. de 2016
Have a look at these lines:
for l=1:NbTraj
u1(l)=norminv(VanDerCorput(l,3));
u2(l)=norminv(VanDerCorput(l,5));
end
You refer to VanDerCorput twice. This is not an inbuilt MATLAB function. If it does not exist (e.g. you defined this variable, or you wrote the function, or saved a third-party function), then of course MATLAB will not be able to find it. Thus the error.
4 comentarios
Walter Roberson
el 27 de Mzo. de 2016
Did you store that code in VanDerCorput.m and put it somewhere on the MATLAB path?
Más respuestas (0)
Ver también
Categorías
Más información sobre Risk Management Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!