Writing code to implement Runge-Kutta methods 1 and 4 for a second order nonlinear ODE

4 visualizaciones (últimos 30 días)
Hi, I am very stuck... I rewrote the equation to where it is written as two 1st order ODE's.
Given: y"(t)+0.05y'(t)+y^3(t)=7.5cos(t)
After re-writing I have:
y_1=y y'_1=y_2
y_2=y' y'_2=-0.05y_2-(y^3_1)+7.5cos(t)
So,
y_(1,i+1)=y_(1,i)+h*y_(2,i) y_(2,i+1)=y_(2,i)+h*(-0.05y_(2,i)-y^3_1+7.5cos(t)
Initial conditions as: y_1(0)=0 and y_2(0)=1
I need to implement these y_1 and y_2 into the Runge Kutta methods for RK1 and RK4.
Thank you!
  3 comentarios
James Tursa
James Tursa el 5 de Mayo de 2016
@Jan: The usual meaning is RK1 is 1st order Runge Kutta (i.e., Euler Method), and RK4 is 4th order Runge Kutta.
James Tursa
James Tursa el 5 de Mayo de 2016
@Bear12: Are you intending to use MATLAB provided functions for the integration? I.e., ode45? Or are you supposed to write the RK1 and RK4 integration code yourself?

Iniciar sesión para comentar.

Respuestas (1)

Manali Gupta
Manali Gupta el 21 de Jun. de 2019
Hi,
Attached file trk.m calculates the derivatives of the variables. The RK4 algorithm to solve the set of equations is implemented in solveOde.m.
I hope this helps.

Productos

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by