Matlab Leave-one-out Cross Validation for SVM

4 visualizaciones (últimos 30 días)
Angga Lisdiyanto
Angga Lisdiyanto el 8 de Jun. de 2016
Comentada: mizuki el 8 de Sept. de 2016
Hello & Assalamu'alaikum, I was train a 2592 data with 512 for it's feature. I wonder, is my code are correct?
Because of the training is need a long time for training process (~9 hours).
I am using Matlab's Toolbox named Classification Learner. Then i generate the code and i got a KFold Cross Validation as a default in generated code. Then i modifying it for Leave-one-out as below :
cvp = cvpartition(response, 'LeaveOut')
% Initialize the predictions and scores to the proper sizes
validationPredictions = response;
numObservations = size(predictors, 1);
numClasses = uniqueClassTotal;
validationScores = NaN(numObservations, numClasses);
% Loop Cross Validation dengan jumlah fold berdasarkan jumlah data
for fold = 1:allDataTotal
trainingPredictors = predictors(cvp.training(fold), :);
trainingResponse = response(cvp.training(fold), :);
% Apply a PCA to the predictor matrix.
% Convert all-numeric predictor table into matrix, ready for use by pca function.
numericPredictors = table2array(varfun(@double, trainingPredictors));
% 'inf' values have to be treated as missing data for PCA.
numericPredictors(isinf(numericPredictors)) = NaN;
[pcaCoefficients, pcaScores, ~, ~, explained, pcaCenters] = pca(...
numericPredictors, ...
'Centered', true);
% Keep enough components to explain the desired amount of variance.
explainedVarianceToKeepAsFraction = 90/100;
numComponentsToKeep = find(cumsum(explained)/sum(explained) >= explainedVarianceToKeepAsFraction, 1);
pcaCoefficients = pcaCoefficients(:,1:numComponentsToKeep);
trainingPredictors = array2table(pcaScores(:,1:numComponentsToKeep));
% Train a classifier
% This code specifies all the classifier options and trains the classifier.
% ambil nilai popup menu FungsiKernel
nilaiFungsiKernel = get(handles.cbFungsiKernel,'String');
FungsiKernel = nilaiFungsiKernel{get(handles.cbFungsiKernel,'Value')};
template = templateSVM(...
'KernelFunction', FungsiKernel, ...
'Solver', 'SMO', ...
'CacheSize', 'maximal', ...
'Standardize', false);
classificationSVM = fitcecoc(...
trainingPredictors, ...
trainingResponse, ...
'Learners', template, ...
'Coding', 'onevsall', ...
'ClassNames', daftarKelas);
pcaTransformationFcn = @(x) array2table(bsxfun(@minus, table2array(varfun(@double, x)), pcaCenters) * pcaCoefficients);
svmPredictFcn = @(x) predict(classificationSVM, x);
validationPredictFcn = @(x) svmPredictFcn(pcaTransformationFcn(x));
% Compute validation predictions and scores
validationPredictors = predictors(cvp.test(fold), :);
[foldPredictions, foldScores] = validationPredictFcn(validationPredictors);
% Store predictions and scores in the original order
validationPredictions(cvp.test(fold), :) = foldPredictions;
validationScores(cvp.test(fold), :) = foldScores;
end
The total of fold loop is same as the total of data training. This is makes training process take a long time. Is my implementation of Leave-one-out for above code are correct?
Please help me, thanks in advance...
  1 comentario
mizuki
mizuki el 8 de Sept. de 2016
If you have Parallel Computing Toolbox, use "parfor" instead of "for" for parallelization.

Iniciar sesión para comentar.

Respuestas (0)

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by