Area under a curve
8 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hi,
I want to calculate the area of this curve. y = [0 1 3 -1 -2 -3 -1 0];
I know a portion of the curve has negative value, so my solution is make all the y values absolute. But then the area of absolute y will be higher. Can anyone help me?

Thanks.
0 comentarios
Respuestas (3)
Star Strider
el 4 de Jul. de 2016
The problem wasn’t immediately obvious to me. You need to find the zero-crossing, and then add the two separate areas:
y = [0 1 3 -1 -2 -3 -1 0];
x = 1:length(y);
zci = @(v) find(v(:).*circshift(v(:), [-1 0]) < 0); % Returns Approximate Zero-Crossing Indices Of Argument Vector
yzxi = zci(y); % Zero-Crossing Index
x0 = interp1(y(yzxi:yzxi+1), x(yzxi:yzxi+1), 0); % Interpolate To Find Zero-Crossing
AUC = polyarea([x(1:yzxi) x0], [y(1:yzxi) 0]) + polyarea([x0 x(yzxi+1:end)], [0 y(yzxi+1:end)]);
INT = trapz(x, abs(y)) % Compare (Optional)
AUC =
10.2500
INT =
11.0000
I used the polyarea function rather than the integration functions. If you have a more complicated function, this will work as well, but you will have to make the appropriate changes to the code. (I included the trapz function integration of the absolute value for comparison.)
2 comentarios
Star Strider
el 5 de Jul. de 2016
Yes.
You simply have to find each one, calculate the zero-crossing, and do polyarea for each segment.
Piyush Madame
el 5 de Jul. de 2016
Editada: Walter Roberson
el 5 de Jul. de 2016
just by some codding
Ver también
Categorías
Más información sobre Numerical Integration and Differentiation en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!