a a a a a
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
a a a a
2 comentarios
John D'Errico
el 18 de Ag. de 2016
When you remove the question, you make the answer useless to anyone else who might want to ask that question. This is an insult to the person who bothered to waste their time to help you.
Star Strider
el 18 de Ag. de 2016
John — TMW will re-post the original if you request them to. Apparently they keep back-up copies.
Respuestas (1)
Mischa Kim
el 5 de Ag. de 2016
Editada: Mischa Kim
el 5 de Ag. de 2016
Kenneth, check out and run this:
g = 9.81;
L = linspace(1,10,14);
theta_0 = 30;
for t = 0:0.1:60 %time in seconds
theta = theta_0*sin(sqrt(g./L)*t);
x = L.*sind(theta);
y = -L.*cosd(theta);
%creating a rope
r = plot(x,y,'*');
%creating a bob
hold on
b = plot(x(length(x)),y(length(y)),'or','markersize',30,'markerfacecolor','r');
axis([-max(L) max(L) -max(L) 0])
drawnow
delete(r)
delete(b)
end
Code needs to be cleaned up but I think you get the drift.
Also note that I changed your equation for theta to show the non-linear behavior of pendula.
0 comentarios
Ver también
Categorías
Más información sobre Timing and presenting 2D and 3D stimuli en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!