How to get prediction scores from exported Classification Learner SVM model

15 visualizaciones (últimos 30 días)
Hello, I am using the Classification Learner tool to train a binary classifier, and I am wondering how to obtain scores for the predictions the trained classifier makes on new test data. I have been using the below command to test the classifiers:
yfit = C.predictFcn(T)
But I would like to know how to calculate/access the scores as well after exporting the model to the workspace from Classification Learner. The command
[labels,score] = predict(___)
gives the following error:
Error using predict (line 84)
Systems of struct class cannot be used with the "predict" command. Convert the system to an identified model
first, such as by using the "idss" command.
I am new to this, so if anyone could explain what I am doing incorrectly, and how to get scores for each prediction using an exported classifier, I would greatly appreciate the help.
Thanks!

Respuesta aceptada

Swarooph
Swarooph el 12 de Ag. de 2016
Hello Ashley,
The predict function expects an input classifier of type such as ClassificationKNN or ClassificationTree etc. In this case you are passing a variable T which is if type struct. That is the reason for the error.
Type the following at the command prompt to see the contents of the struct:
>> T %Variable name of the exported classifier struct
Here one of the fields will be the classification object. For e.g. for my exported model referred by struct variable trainedClassifier, I see the following.
>> trainedClassifier
trainedClassifier =
predictFcn: [function_handle]
RequiredVariables: {1x11 cell}
ClassificationKNN: [1x1 ClassificationKNN]
About: 'This struct is a tra…'
HowToPredict: 'To make predictions …'
Note here that one of the fields is the actual classification object, ClassificationKNN. Note that, based on the type of trained classifier this might differ. To access this we can use the dot operator.
kNNMdl = trainedClassifier.ClassificationKNN;
Now use this as input to the predict function to get scores:
[labels,score] = predict(kNNMdl,ValData);
  4 comentarios
SK
SK el 28 de Abr. de 2020
Swaroop what does ValData correspond to? where did you get that from original question? ValData isnt Matlab funtion. PLease help. Thanks!
xuan fan
xuan fan el 31 de Ag. de 2021
whats mean of this score matrix?
what if I wish to output that probability

Iniciar sesión para comentar.

Más respuestas (5)

Miguel sanchez
Miguel sanchez el 21 de Mzo. de 2018
Hello, i have the same problem. I try mi trainingClassifier on a complete new data but i cant get the score values. 'ValData' correspond to what???

Aditi Vedalankar
Aditi Vedalankar el 10 de Sept. de 2018
Dear swaooph, I have trained the data using linear SVM. And from classification learner, I have exported the trained model to work space. I have written the following code for test data prediction as follows.. function Test_svm1() d = dir('*.xlsx'); fileName = d.name; %// Get the file name filename = 'DBModified_DTCWT_4Level_TST.xlsx'; sheet = 1; trainingData = xlsread(fileName,sheet); [trainedClassifier, validationAccuracy] = trainClassifier(trainingData);
filename = 'DBModified_DTCWT_4Level_TST.xlsx'; T = xlsread(filename); yfit=predict(trainedModel,T(:,trainedModel.predictFcn)); end But I get the following error Function 'subsindex' is not defined for values of class 'cell'. Error in trainClassifier (line 48) predictors = inputTable(:, predictorNames);
Error in Test_svm1 (line 7) [trainedClassifier, validationAccuracy] = trainClassifier(trainingData); Pl suggest me where i have done mistake Regards Aditi Vedalankar

Felix Ajayi
Felix Ajayi el 8 de Abr. de 2019
struct with fields:
predictFcn: @(x)ensemblePredictFcn(predictorExtractionFcn(x))
RegressionEnsemble: [1×1 classreg.learning.regr.RegressionBaggedEnsemble]
About: 'This struct is a trained model exported from Regression Learner R2018b.'
HowToPredict: 'To make predictions on a new predictor column matrix, X, use: ↵ yfit = c.predictFcn(X) ↵replacing 'c' with the name of the variable that is this struct, e.g. 'trainedModel'. ↵ ↵X must contain exactly 499 columns because this model was trained using 499 predictors. ↵X must contain only predictor columns in exactly the same order and format as your training ↵data. Do not include the response column or any columns you did not import into the app. ↵ ↵For more information, see How to predict using an exported model.'
yfit = C.predictFcn(T)
Please experts in the house how do how to get prediction scores from exported Classification Regression Learner SVM model. When I run the code the scores are not generated. I would really appreciate your swift reponse. Thank you.

Felix Ajayi
Felix Ajayi el 8 de Abr. de 2019
Experts in the house. Please I still need your help. I count on you guys.
Thank you in advance as I look forward for your reponses.
  1 comentario
SK
SK el 25 de Abr. de 2020
Editada: SK el 25 de Abr. de 2020
I assume you are using Ensemble algos: either BAG or LS Boost. Plug in your trained model, either of those two where it says yourBagModel.mat
Load yourBagModel.mat;
yourBagModel.RegressionEnsemble
Names = yourBagModel.RegressionEnsemble.PredictorNames
x = cell(2,499) % this means starting row 2 (assuming in row 1 are your predictor lables), and 499 columns for number of predictors
x(1,:)= Names
x(2,:)= num2cell(predictorImportance(yourBagModel.RegressionEnsemble))
x = x;

Iniciar sesión para comentar.


Savita Hanchinal
Savita Hanchinal el 8 de Jul. de 2021
clc
close all;
close all;
cd Database
DF=[]
for i=1:45
i
str1=int2str(i);
str2=strcat(str1,'.jpg');
nor=imread(str2);
%color
cmap=rgb2hsv(nor);
H=cmap(:,:,1);
S=cmap(:,:,2);
V=cmap(:,:,3);
Hmean=mean(mean(H));
Hst=std2(H);
Smean=mean(mean(S));
Sst=std2(S);
Vmean=mean(mean(V));
Vst=std2(V);
Hsk=sum(skewness(H));
Ssk=sum(skewness(S));
Vsk=sum(skewness(V));
Hmin=min(imhist(H));
Hmax=max(imhist(H));
Smin=min(imhist(S));
Smax=max(imhist(S));
Vmin=min(imhist(V));
Vmax=max(imhist(V));
%texture
I=rgb2gray(nor);
glcm=graycomatrix(I,'offset',[2 0;0 2]);
stats1=graycoprops(glcm,{'contrast','homogeneity'});
stats2=graycoprops(glcm,{'correlation','energy'});
t1=stats1.Contrast;
t2=stats1.Homogeneity;
t3=stats2.Correlation;
t4=stats2.Energy;
%Shape
FEAT=horzcat(1,[Hmean Hst Smean Sst Vmean Vst Hsk Vsk Ssk Hmin Hmax Smin Smax Vmin Vmax t1 t2 t3 t4]);
DF=[DF;FEAT];
end
cd ..
[fname,path]=uigetfile('.jpg','Provide currency for testing');
filename=strcat(path,fname);
nor=imread(filename);
%color
cmap=rgb2hsv(nor);
H=cmap(:,:,1);
S=cmap(:,:,2);
V=cmap(:,:,3);
Hmean=mean(mean(H));
Hst=std2(H);
Smean=mean(mean(S));
Sst=std2(S);
Vmean=mean(mean(V));
Vst=std2(V);
Hsk=sum(skewness(H));
Ssk=sum(skewness(S));
Vsk=sum(skewness(V));
Hmin=min(imhist(H));
Hmax=max(imhist(H));
Smin=min(imhist(S));
Smax=max(imhist(S));
Vmin=min(imhist(V));
Vmax=max(imhist(V));
%texture
I=rgb2gray(nor);
glcm=graycomatrix(I,'offset',[2 0;0 2]);
stats1=graycoprops(glcm,{'contrast','homogeneity'});
stats2=graycoprops(glcm,{'correlation','energy'});
t1=stats1.Contrast;
t2=stats1.Homogeneity;
t3=stats2.Correlation;
t4=stats2.Energy;
%Shape
QF=horzcat(1,[Hmean Hst Smean Sst Vmean Vst Hsk Vsk Ssk Hmin Hmax Smin Smax Vmin Vmax t1 t2 t3 t4]);
%Multi svm
Trainigset=[DF(1,:);DF(2,:);DF(3,:);DF(4,:);DF(5,:);DF(6,:);DF(7,:);DF(8,:);DF(9,:);DF(10,:);DF(11,:);DF(12,:);DF(13,:);DF(14,:);DF(15,:);DF(16,:);DF(17,:);DF(18,:);DF(19,:);DF(20,:);DF(21,:);DF(22,:);DF(23,:);DF(24,:);DF(25,:);DF(26,:);DF(27,:);DF(28,:);DF(29,:);DF(30,:);DF(31,:);DF(32,:);DF(33,:);DF(34,:);DF(35,:);DF(36,:);DF(37,:);DF(38,:);DF(39,:);DF(40,:);DF(41,:);DF(42,:);DF(43,:);DF(44,:);DF(45,:)];
GroupTrain={'1' '1' '1' '1' '1' '1' '1' '1' '1' '2' '2' '2' '2' '2' '2' '2' '2' '2' '3' '3' '3' '3' '3' '3' '3' '3' '3' '4' '4' '4' '4' '4' '4' '4' '4' '4' '5' '5' '5' '5' '5' '5' '5' '5' '5' };
TestSet=QF;
SVMModels=cell(5,1);
y=GroupTrain
classes=unique(y);
rng(1);
for j=1:numel(classes)
indx=strcmp(y',classes(j));
SVMMOdels{j}=fitcsvm(DF,indx,'ClassNames',[false true],'Standardize',true,'KernelFunction','rbf','BoxConstraint',1);
end
xGrid=QF;
for j=1:numel(classes)
[~,score]=predict(SVMModels{j},xGrid)
Scores(:,j)=score(:,2);
end
[~,maxScore]=max(score,[],2);
result=maxScore;
figure.imshow(nor)
title('input')
if result==1
msgbox('10')
elseif result==2
msgbox('20')
elseif result==3
msgbox('50')
elseif result==4
msgbox('100')
elseif result==5
msgbox('500')
end
Iam getting error from thtis line please help me
for j=1:numel(classes)
[~,score]=predict(SVMModels{j},xGrid)
Scores(:,j)=score(:,2);

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by