RBF newrbe algorithm uses k-means and inverse matrix?

3 visualizaciones (últimos 30 días)
EdWood
EdWood el 20 de Ag. de 2016
Comentada: Greg Heath el 15 de Mzo. de 2017
Does newrbe algorithm use k-means or random vectors for neuron center? For weights calculations is uses inverse matrix?

Respuesta aceptada

Greg Heath
Greg Heath el 21 de Ag. de 2016
Editada: Greg Heath el 21 de Ag. de 2016
No. NEWRBE constructs identical symmetric Gaussians around EACH data point. Therefore, to optimize the design, just vary the common radius of the Gaussians.
Weights are determined using pseudo-inversion via the minimum-mse BACKSLASH solution x = A\b to the linear matrix equation A*x = b.
For serious RBF work, consider a modification of NEWRB where Gaussians are iteratively constructed from the poorest performing data point.
Years ago I made some substantial improvements to the NEWRB algorithm in the NEWSGROUP. Try searching backwards in time with the search words
greg newrb
Hope this helps.
Thank you for formally accepting my answer
Greg
  2 comentarios
Xiaoran Li
Xiaoran Li el 14 de Mzo. de 2017
Hi, Greg. I found you answered many questions on RBFNN. And I want to ask a question similar like this. 'I am studying on RBFNN, and I have read about K-mean, OLS to determine the center. But when I use the function newrb, there this no need to determine how to choose the center. I want to know how does the function newrb choose data center, and how it works.' I will be greatly appreciated for your help! Thanks!
Greg Heath
Greg Heath el 15 de Mzo. de 2017
I just answered that in the previous post:
The input with the highest error is added to the training set.

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Deep Learning Toolbox en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by