Need help on neural network train test and validation accuracy
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
debasmita bhoumik
el 28 de Ag. de 2016
Editada: Greg Heath
el 1 de Sept. de 2016
My data set have 420 images(24 features each). there are 160 for train. 20 for validation. 240 for testing. my problem is, after writing this code am getting 100% accuracy which is absurd. plz help me in this matter as am not sure if my code is correct or not.
% Solve a Pattern Recognition Problem with a Neural Network
load('ftrmat420.mat'); %420 x 24
load('class_test.mat'); %1 x 420
x=transpose(ftrmat420);
t=class_test;
inputs = x
targets = t
% Create a Pattern Recognition Network
hiddenLayerSize = 10;
net = patternnet(hiddenLayerSize);
% Set up Division of Data for Training, Validation, Testing
%net.divideParam.trainRatio = 30/100;
%net.divideParam.valRatio = 13/100;
%net.divideParam.testRatio = 57/100;
%[trainInd,valInd,testInd] = divideind(420,241:420,1:10,1:240);
net.divideFcn = 'divideind';
net.divideParam.trainInd = 261:420;
net.divideParam.valInd = 241:260;
net.divideParam.testInd = 1:240;
% Train the Network
[net,tr] = train(net,inputs,targets);
% Test the Network
outputs = net(inputs);
errors = gsubtract(targets,outputs)
performance = perform(net,targets,outputs)
% View the Network
view(net)
% Plots
% Uncomment these lines to enable various plots.
figure, plotperform(tr)
figure, plottrainstate(tr)
figure, plotconfusion(targets,outputs)
[c,cm] = confusion(targets,outputs)
fprintf('Percentage Correct Classification : %f%%\n', 100*(1-c));
fprintf('Percentage Incorrect Classification : %f%%\n', 100*c);
figure, ploterrhist(errors)
trainTargets = targets .* tr.trainMask{1};
valTargets = targets .* tr.valMask{1};
testTargets = targets .* tr.testMask{1};
trainPerformance = perform(net,trainTargets,outputs)
valPerformance = perform(net,valTargets,outputs)
testPerformance = perform(net,testTargets,outputs)
0 comentarios
Respuesta aceptada
Greg Heath
el 1 de Sept. de 2016
Editada: Greg Heath
el 1 de Sept. de 2016
Your data division fractions don't make sense at all.
160/20/240 ==> 0.38/0.05/0.57
You only have 160 training equations to estimate
(240+1)*10+(10+1)*1 = 2421 unknown weights
Your net is severely overfit.(i.e.,useless)
Stick with something close to the defaults 0.7/0.15/0.15
Hope this helps.
Thank you for formally accepting my answer
Greg
0 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Sequence and Numeric Feature Data Workflows en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!