How i can convert discrete filter to continuous transfer function?
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
b0 = 12.575612; b1 = -18.9426445; b2 = 6.4607418;
b = [b0 b1 b2];
a0 = 1.7892133; a1 = -0.7892133; a2 = 0;
a = [a0 a1 a2];
hq = dfilt.df1(b,a,);
How i can convert discrete filter to continuous transf
I need sys = tf(hq);
It not working. Is it possible to convert? If is possible, then how?
0 comentarios
Respuestas (1)
Star Strider
el 28 de Nov. de 2016
You need to ‘invert’ the bilinear transform using the Symbolic Math Toolbox, then solve:
syms H(s) T z Z
assume(T > 0)
Eq = s == 2/T * (z - 1)/(z + 1);
Z = solve(Eq, z)
b0 = 12.575612;
b1 = -18.9426445;
b2 = 6.4607418;
b = [b0 b1 b2];
bz = poly2sym(b, z)
bs = subs(bz,z,Z)
bs = vpa(expand(simplify(bs, 'Steps', 10)), 5)
a0 = 1.7892133;
a1 = -0.7892133;
a2 = 0;
a = [a0 a1 a2];
az = poly2sym(a, z)
as = subs(az,z,Z)
as = vpa(expand(simplify(as, 'Steps', 10)), 5)
producing:
bs = (176.38*T*s)/(T^2*s^2 - 4.0*T*s + 4.0) - 151.54/(T^2*s^2 - 4.0*T*s + 4.0) + 37.979
as = (17.471*T*s)/(T^2*s^2 - 4.0*T*s + 4.0) - 6.3137/(T^2*s^2 - 4.0*T*s + 4.0) + 2.5784
The ‘T’ variable is the sampling interval (inverse of the sampling frequency). Substitute your actual sampling interval for ‘T’, then use the numden and sym2poly functions (in that order) to create your polynomials to give to the Control System Toolbox tf function.
I leave prewarping and other design decisions to you. Incorporate it as necessary.
0 comentarios
Ver también
Categorías
Más información sobre Dynamic System Models en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!