1D Heat Conduction using explicit Finite Difference Method

310 visualizaciones (últimos 30 días)
Derek Shaw
Derek Shaw el 15 de Dic. de 2016
Respondida: Alugunuri el 8 de Feb. de 2023
Hello I am trying to write a program to plot the temperature distribution in a insulated rod using the explicit Finite Central Difference Method and 1D Heat equation. The rod is heated on one end at 400k and exposed to ambient temperature on the right end at 300k. I am using a time of 1s, 11 grid points and a .002s time step. When I plot it gives me a crazy curve which isn't right. I think I am messing up my initial and boundary conditions. Here is my code.
L=1;
t=1;
k=.001;
n=11;
nt=500;
dx=L/n;
dt=.002;
alpha=k*dt/dx^2;
T0(1)=400;
for j=1:nt
for i=2:n
T1(i)=T0(i)+alpha*(T0(i+1)-2*T0(i)+T0(i-1));
end
T0=T1;
end
plot(x,T1)
  2 comentarios
KSSV
KSSV el 15 de Dic. de 2016
First place, it is not giving any curve..there is a error in your code. Please recheck your code once.
Derek Shaw
Derek Shaw el 15 de Dic. de 2016
I am not sure I understand correctly. In the above I wrote this equation to be iterated
With Boundary conditions
and Initial Conditions
with T0=400k and TL=Ti=300k
I am not sure how to set these boundary conditions in the code. Or if there is a curve I need to derive before doing the iterations.

Iniciar sesión para comentar.

Respuesta aceptada

michio
michio el 15 de Dic. de 2016
Editada: michio el 15 de Dic. de 2016
It seems your initial condition and boundary conditon (x = L) are missing in the code. Try
L=1;
t=1;
k=.001;
n=11;
nt=500;
dx=L/n;
dt=.002;
alpha=k*dt/dx^2;
T0=400*ones(1,n);
T1=300*ones(1,n);
T0(1) = 300;
T0(end) = 300;
for j=1:nt
for i=2:n-1
T1(i)=T0(i)+alpha*(T0(i+1)-2*T0(i)+T0(i-1));
end
T0=T1;
end
plot(T1)
  9 comentarios
Torsten
Torsten el 4 de Dic. de 2022
Yes, code should be
L=1;
t=1;
k=.001;
n=11;
nt=10000;
dx=L/n;
dt=.002;
alpha=k*dt/dx^2;
T0=300*ones(1,n+1);
T0(1) = 400;
T1 = T0;
for j=1:nt
for i=2:n
T1(i)=T0(i)+alpha*(T0(i+1)-2*T0(i)+T0(i-1));
end
T0=T1;
end
plot((0:n)*L/n,T1)

Iniciar sesión para comentar.

Más respuestas (3)

youssef aider
youssef aider el 12 de Feb. de 2019
here is one, you can just change the boundaries
clear
clc
clf
% domain descritization
alpha = 0.05;
xmin = 0;
xmax = 0.2;
N = 100;
dx = (xmax-xmin)/(N-1);
x = xmin:dx:xmax;
dt = 4.0812E-5;
tmax = 1;
t = 0:dt:tmax;
% problem initialization
phi0 = ones(1,N)*300;
phiL = 230;
phiR = phiL;
% solving the problem
r = alpha*dt/(dx^2) % for stability, must be 0.5 or less
for j = 2:length(t) % for time steps
phi = phi0;
for i = 1:N % for space steps
if i == 1 || i == N
phi(i) = phiL;
else
phi(i) = phi(i)+r*(phi(i+1)-2*phi(i)+phi(i-1));
end
end
phi0 = phi;
plot(x,phi0)
shg
pause(0.05)
end

okncyln
okncyln el 22 de Dic. de 2017
implicit?

Alugunuri
Alugunuri el 8 de Feb. de 2023
how to write code with neumqn BCs ?

Etiquetas

Productos

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by