How to get optimal tree when using random forest method

2 visualizaciones (últimos 30 días)
Mekala balaji
Mekala balaji el 27 de Dic. de 2016
Comentada: Marta Caneda Portela el 6 de Sept. de 2022
Hi,
I use the
meas=[...
[53.4
194.5
220.5
273.1
312.3
331.7
159.7
199.5
293.9
390.7
392.1
398.9
399.1
400.3
52.1
249.3
357.7
44.8
163.9
200.5
335.1
92.4
130.3
77.1]]
species=[{'v16'
'v6'
'v1'
'v126'
'v6'
'v1'
'v16'
'v6'
'v5'
'v156'
'v6'
'v1'
'v16'
'v6'
'v12456'
'v56'
'v256'
'v2456'
'v6'
'v16'
'v1234'
'v16'
'v12356'
'v6'}]
I use below code:
b = TreeBagger(50,meas,species,'oobpred','on')
But how to get optimal tree? Many thanks in advance.

Respuestas (2)

mizuki
mizuki el 30 de Dic. de 2016
Optimize tree with Bayesian Optimization (use bayesopt function). This feature is introduced in R2016b.
  • Tune Random Forest Using Quantile Error and Bayesian Optimization
Also you can search optimal parameters with other methods such as gridsearch, but you need to write code. For gridsearch, this might help you:
  • How to do grid Search to optimize sigma using Matlab?
  2 comentarios
Amy Xu
Amy Xu el 19 de Abr. de 2017
I'm trying to run the following Mathworks example with my own X and Y:
"Tune Random Forest Using Quantile Error and Bayesian Optimization"
https://jp.mathworks.com/help/stats/tune-random-forest-using-quantile-error-and-bayesian-optimization.html
But, I'm getting the following error:
Undefined function or variable 'Y'.
I have attached the modified code (place both files in one folder on your PC drive). Can anyone help?
Marta Caneda Portela
Marta Caneda Portela el 6 de Sept. de 2022
What if I also need 5-fold cross-validation? I can't find any examples online

Iniciar sesión para comentar.


Don Mathis
Don Mathis el 20 de Abr. de 2017
You could also try to find the best ensemble like this:
fitcensemble(meas,species,'OptimizeHyperparameters','all')
This will also try boosted decision trees in addition to random forests.

Etiquetas

Aún no se han introducido etiquetas.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by