Error in code for MATlab
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Niam
el 15 de En. de 2017
Comentada: Star Strider
el 15 de En. de 2017
clear all
syms s w
G = 1/((s)*(s+1)*(s+2)); %transfer function
G_w = subs(G,s,j*w);
W= [-1000:0.1:1000]; %[min_range:step size:max_range]
nyq = eval(subs(G_w,w,W));
x = real(nyq)
y = imag(nyq)
plot(x,y)
I can't seem to run this code and it keeps displaying error in line 100++ where I've only less than 20 lines.
This are the errors shown:
Error using symengine (line 59)
Division by zero.
Error in sym/subs>mupadsubs (line 139)
G = mupadmex('symobj::fullsubs',F.s,X2,Y2);
Error in sym/subs (line 124)
G = mupadsubs(F,X,Y);
Error in nyquist2 (line 8)
nyq = eval(subs(G_w,w,W)); %replace W with w in equation G_w
Does any expert know the cause of the problem?
2 comentarios
Image Analyst
el 15 de En. de 2017
I've fixed the formatting for you this time, but for next time, please read this link to learn how to format.
Respuesta aceptada
Star Strider
el 15 de En. de 2017
Editada: Star Strider
el 15 de En. de 2017
If you have the Control System Toolbox, this works:
s = tf('s');
G = 1/((s)*(s+1)*(s+2)); %transfer function
figure(1)
pzmap(G)
figure(2)
rlocus(G)
figure(3)
nyquist(G)
EDIT — I didn’t notice the ‘nyquist’ tag at first. Added rlocus and nyquist calls.
4 comentarios
Star Strider
el 15 de En. de 2017
Part of the problem with your initial coding is the subtle fact that the Laplace variable ‘s’ is ‘sigma ± j*w’. (This is necessary because of the symmetry of the complex plane.) You then have to supply a range for both ‘sigma’ (the real part) and ‘w’ (the complex frequency).
Your code, slightly revised:
syms s w sigma
G = symfun(1/((s)*(s+1)*(s+2)), s); %transfer function
H = expand(G(sigma+1i*w) * G(sigma-1i*w));
H = simplify(H, 'Steps',10);
Hfun = matlabFunction(H)
producing:
Hfun = (sigma,w) 1.0./(sigma.^2.*w.^2.*1.8e1+sigma.^3.*w.^2.*1.2e1+sigma.^2.*w.^4.*3.0+sigma.^4.*w.^2.*3.0+sigma.*w.^2.*1.2e1+sigma.*w.^4.*6.0+sigma.^2.*4.0+sigma.^3.*1.2e1+sigma.^4.*1.3e1+sigma.^5.*6.0+sigma.^6+w.^2.*4.0+w.^4.*5.0+w.^6);
that you can use outside of the Symbolic Math Toolbox. I leave the rest to you. If you use meshgrid with vectors for ‘sigma’ and ‘w’ and then plot it with surf or mesh. you should be able to see the entire complex surface with the poles. (There are zeros only at ±Inf in your transfer function.) I have not done the plot.
Más respuestas (0)
Ver también
Categorías
Más información sobre Spectral Measurements en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!