DFT linearity - "melodic" tones spectrum problem

1 visualización (últimos 30 días)
micholeodon
micholeodon el 17 de En. de 2017
Comentada: micholeodon el 17 de En. de 2017
Hello,
My question is simple:
When I take the FFT of the signal consisting of three subsequent sinusoidal tones should I get the same resulting spectrum as when I take spectra of each tone separately and sum them up?
My script below suggest that this might not be true. Why?
With regards, Micholeodon
%%"MELODIC" vs "HARMONIC" tones analysis
clear;
close all;
clc;
% prepare custom signal: contains threee harmonics: f1 f2 f3 Hz. Each
% harmonic lasts for t_dur s. Harmonics onsets at: t1, t2, t3.
f1 = 2;
f2 = 10;
f3 = 20;
t1 = 0;
t2 = 1;
t3 = 2;
a1 = 1;
a2 = 1;
a3 = 1;
t_dur = 1;
srate = 500;
t_i = 0;
t_e = t_i + 3*t_dur - 1/srate; % nescessary to delete last sample in order to srate/length(timeline) be integer
timeline = t_i:(1/srate):t_e;
n = @(x) (x-t_i)*srate + 1; % function to get sample number from time
s1 = a1*sin(2*pi*f1*timeline);
s1(n(t_i):n(t1)) = 0;
s1(n(t1 + t_dur):n(t_e)) = 0;
s2 = a2*sin(2*pi*f2*timeline);
s2(n(t_i):n(t2)) = 0;
s2(n(t2 + t_dur):n(t_e)) = 0;
s3 = a3*sin(2*pi*f3*timeline);
s3(n(t_i):n(t3)) = 0;
s3(n(t3 + t_dur):n(t_e)) = 0;
sig_mel = s1 + s2 + s3;
h1 = a1*sin(2*pi*f1*timeline);
h2 = a2*sin(2*pi*f2*timeline);
h3 = a3*sin(2*pi*f3*timeline);
sig_harm = h1 + h2 + h3;
X_mel = fft(sig_mel);
X_mel_mag = abs(X_mel);
X_harm = fft(sig_harm);
X_harm_mag = abs(X_harm);
m = 0:length(timeline)-1;
figure(1)
subplot(4,1,1)
plot(timeline, sig_mel)
title('tones in sequence')
subplot(4,1,2)
plot(timeline, sig_harm)
title('tones harmonicly')
subplot(4,1,3)
plot(m, X_mel_mag)
title('DFT of sequenced tones')
subplot(4,1,4)
plot(m, X_harm_mag)
title('DFT of harmonic tones')
% check linearity of the spectrum: analyse each tone separately, obtain
% their spectra and sum them together and finally compare with melodic
% signal spectrum.
figure(2)
subplot(3,1,1)
plot(timeline,s1)
title('first tone')
subplot(3,1,2)
plot(timeline,s2)
title('second tone')
subplot(3,1,3)
plot(timeline,s3)
title('third tone')
figure(3)
s1_dft = fft(s1);
s2_dft = fft(s2);
s3_dft = fft(s3);
subplot(4,1,1)
plot(m,abs(s1_dft))
title('first tone DFT')
subplot(4,1,2)
plot(m,abs(s2_dft))
title('second tone DFT')
subplot(4,1,3)
plot(m,abs(s3_dft))
title('third tone DFT')
subplot(4,1,4)
sum_dft = abs(s1_dft)+abs(s2_dft)+abs(s3_dft);
plot(m,sum_dft)
title('sum of DFTs')
% compasrison
figure(4)
subplot(3,1,1)
plot(m, X_mel_mag)
title('DFT of sequenced tones')
subplot(3,1,2)
plot(m,sum_dft)
title('sum of DFTs')
subplot(3,1,3)
plot(m, X_mel_mag - sum_dft)
title('Difference')

Respuesta aceptada

Honglei Chen
Honglei Chen el 17 de En. de 2017
You need to define the sum_dft as
sum_dft = s1_dft+s2_dft+s3_dft;
instead and then plot and compare using abs(sum_dft). Otherwise you are not doing a fair comparison as you throwing away all the phase information.
HTH
  1 comentario
micholeodon
micholeodon el 17 de En. de 2017
Thank you very much ! That's it ! :D Now the "Difference" values are of order of magnitude e-14. So I consider it as machine-epsilon noise.

Iniciar sesión para comentar.

Más respuestas (0)

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by