How can I plot the square root of normally distributed data?

7 visualizaciones (últimos 30 días)
AK
AK el 1 de Feb. de 2017
Editada: John Chilleri el 1 de Feb. de 2017
I have a Gaussian distributed data with mean zero. I first want to take the square root of that data and then trying to find the standard deviation. I have the following issue with this:
By taking the square root of the data I am getting some imaginary numbers which are expected, so I am converting all data into real numbers by taking real(data)-imag(data). But if I look at the histogram of that data, it is no longer a Gaussian. I was expecting it to be Gaussian because if we take the square root of a Gaussian function it should be a Gaussian with increased standard deviation. I am not sure what am I missing here? A sample code is as follows
x= randn(1000); figure;histfit(x(1,:)); y=sqrt(x(1,:));
y1=real(y)-imag(y);figure;histfit(y1(1,:))
If the data is not normally distributed, is there any way to convert it into equivalent normal distribution? I am interested in three sigma rule of normal distribution.
I would be really thankful for suggestions.
Best regards
Ashok
  1 comentario
Walter Roberson
Walter Roberson el 1 de Feb. de 2017
I have never seen real(y)-imag(y) used to convert numbers to real. I would not expect the result to be gaussian.

Iniciar sesión para comentar.

Respuesta aceptada

John Chilleri
John Chilleri el 1 de Feb. de 2017
Editada: John Chilleri el 1 de Feb. de 2017
Hello,
The problem is that transforming data with a square root does not necessarily maintain the normal distribution, this is especially true if you consider numbers in the -1 to 1 range, as their square roots increase their magnitude. So a normal distribution around 0 would appear bimodal after taking the square root.
With large numbers, a simple, somewhat "solution" would be:
Data = sign(Data).*sqrt(abs(Data));
This maintains the signs of the Data, while square rooting their magnitudes.
The distribution will change because it was square rooted, but it will retain its signage, while doing what I believe you desire.
Hope this helps!
  3 comentarios
Walter Roberson
Walter Roberson el 1 de Feb. de 2017
exp(-x^2) can never be negative.
AK
AK el 1 de Feb. de 2017
Thanks Walter!
Do you have any suggestion about how can I report the error ( three sigma) in such distribution.

Iniciar sesión para comentar.

Más respuestas (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by