Problem with fsolve?
5 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hi everyone! I'm trying to solve a non linear system of 2eqs,but i can't really find the exact results! (lambda=0.4 Tout=1100) I tried to change options related to intervals, but didn't received good news. I don'r really know where's the mistake,is there someone that can help me? Here's the code:
global P R P=30; %bar R=1.98; %cal/mol*K a0=[0.2,700]; a=fsolve('composizionemarzosistemaletterale',a0); lambdafin=a(1) Toutfin=a(2)
function reattoremarzo=composizionemarzosistemaletterale(a) global P R lambda=a(1); Tout=a(2);
GR1=(-8514+7.71*Tout); % WGS
GR2=(53717-60.25*Tout); % SR
Keq1=exp((-GR1)/(R*Tout));
Keq2=exp((-GR2)/(R*Tout));
reattoremarzo(1)=(P^(2) * (0.8-lambda)*(2.40+lambda)^(3) )/((6.60^(2) * 0.2*(3.20-lambda)))-Keq2; %SR
reattoremarzo(2)=(lambda*(2.40+lambda))/((0.8-lambda)*(3.2-lambda)) - Keq1; %WGS
end
Thanks in advance
0 comentarios
Respuestas (2)
John D'Errico
el 8 de Feb. de 2017
Editada: John D'Errico
el 8 de Feb. de 2017
The answer is that
lambda=0.4, Tout=1100
is NOT the true solution to your equations. You may think it is. But that is wrong. Lets see what happens. I'll use the symbolic toolbox so that I won't need to worry about convergence.
P=30;R=1.98;
syms lambda Tout
GR1=(-8514+7.71*Tout); % WGS
GR2=(53717-60.25*Tout); % SR
Keq1=exp((-GR1)/(R*Tout));
Keq2=exp((-GR2)/(R*Tout));
E1=(P^(2) * (0.8-lambda)*(2.40+lambda)^(3) )/((6.60^(2) * 0.2*(3.20-lambda)))-Keq2; %SR
E2=(lambda*(2.40+lambda))/((0.8-lambda)*(3.2-lambda)) - Keq1; %WGS
result = solve(E1,E2,lambda,Tout)
Warning: Cannot solve symbolically. Returning a numeric approximation instead.
> In solve (line 303)
result =
struct with fields:
lambda: [1×1 sym]
Tout: [1×1 sym]
result.lambda
ans =
0.4023100845011317337437541837291
result.Tout
ans =
1100.5492492829987172462281406487
So 0.4 and 1100 are CLOSE. But the exact solution is not what you think it is. So fsolve is probably working just fine. It is your expected result that is incorrect.
My guess is that you are running afoul of approximate values reported to the command window, but then assuming they were exact.
Torsten
el 8 de Feb. de 2017
The "mistake" is that your initial guess (0.2,700) is too far away from the solution you search for (0.4,1100).
Try an improved initial guess.
Best wishes
Torsten.
Ver también
Categorías
Más información sobre Surrogate Optimization en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!